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ABSTRACT
Machine learning classi�cation has enabled many innovative ser-
vices, e.g., in medicine, biometrics, and �nance. Current practices
of sharing sensitive input data or classi�cation models, however,
causes privacy concerns among the users and business risk among
the providers. In this work, we resolve the con�ict between privacy
and business interests using Secure Two-Party Computation. Con-
cretely, we propose SHIELD, a framework for e�cient, and accurate
machine learning classi�cation with security in the semi-honest
model. Building on SHIELD, we realize several widely used classi-
�ers and real-world use cases that compare favorably against related
work. Departing de�nitively from prior works, all of SHIELD’s pro-
tocols are designed from the ground up to enable secure outsourcing
to untrusted computation clouds enabling even constrained devices
to handle our most complex use cases in (milli)seconds.
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1 INTRODUCTION
With “data [...] the oil of the 21st century economy” [53], a growing
number of services employ machine learning classi�cation to re�ne
it: Speech and handwriting recognition, biometric identi�cation, or
medical diagnosis are only a few examples. These applications are
often deployed as-a-service in the cloud with access conveniently
integrated into users’ devices and applications. Users are required to
send their data to the service providers who perform classi�cations
using proprietary models, neglecting that users’ inputs are often
highly sensitive and must be protected. Speech recognition, e.g., not
only reveals the user’s searches to the service provider but allows
creating voice pro�les to impersonate users [59, 84].

A simple solution would be to perform classi�cations locally on
the user’s device (if it is has enough resources). Machine learning
models are, however, expensive to train and their quality creates
competitive edge. Service providers hence treat and protect them
as their intellectual property. Data protection legislation presents
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a second reason why handing out models is not a viable solution.
E.g., models for a genetic disease testing service may be trained
over con�dential patient records and residual risk remains that
the learned models still leak information about individual patients
[31] – sharing such models could be unlawful, e.g., according to the
U.S. Health Insurance Portability and Accountability Act of 1996.

Hence, classi�cation services–especially those involving highly
sensitive data–face a con�ict of business interests, regulatory issues,
and privacy concerns. A promising solution is Secure Two-Party
Computation (STC), which allows a user and service provider to
compute classi�cations under strong security and privacy guar-
antees such that neither party is able to learn the other party’s
input [85]. First yet very specialized e�orts in this direction have
been made for Naive Bayes [75], Support Vector Machines (SVMs)
[81], linear classi�ers [39], face recognition [34, 70] and logistic
regression [19]. Bost et al. [20] presented a �rst general framework
for secure classi�cation supporting hyperplane classi�ers, Naive
Bayes, and decision trees. Due to the success of deep learning, se-
cure evaluation of Arti�cial Neural Networks (ANNs) has been the
focus of related works [29, 52, 66, 68], while others [4, 36, 86] tackle
secure pattern recognition with Hidden Markov Models (HMMs).

From these works, we identify three di�cult challenges when de-
signing STC protocols for classi�cation. i) E�ciency: STC involves
large numbers of cryptographic and interactive operations that may
cause infeasible overheads in real-world applications. ii) Accuracy:
many classi�cation algorithms entail computations over very small
probabilities that cause numerical instabilities [64]–the fact that all
established STC approaches build on cryptographic primitives de-
�ned over discrete algebraic structures renders numerical accuracy
even more challenging. iii) Mobility: traditional STC approaches
assume high-powered hosts connected over stable, high-bandwidth,
low-latency networks–mobile scenarios, however, typically involve
resource-constrained devices and networks.

The main thrust of previous works has been to optimize e�-
ciency while maintaining accuracy–none of them considers the out-
lined challenges posed by mobile usage scenarios such as resource
constraints, network dynamics, and connectivity. In this paper, we
introduce the SHIELD framework that allows two mutually dis-
trustful parties to securely, e�ciently, and accurately compute or
outsource classi�cations using a range of state-of-the-art classi�ers.
SHIELD thereby enables Secure Classi�cation as a Service, conceptu-
ally complementing existing Machine Learning as a Service cloud
o�ers [6, 38, 54] that typically violate both the user’s and the service
provider’s privacy. The following are our main contributions:

Framework for Secure Classi�cation.We analyze core build-
ing blocks of classi�cation algorithms and propose e�cient hybrid
STC protocols. Our building blocks provide tunable accuracy and
are �exibly composable which we demonstrate by realizing a range
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of established classi�ers with distinctly di�erent characteristics, i.e.,
linear classi�ers such as SVMs, Bayesian classi�ers with discrete
and continuous features, ANNs with arbitrary activation functions,
and the Viterbi algorithm on di�erent HMM architectures.

Performance Evaluation. We evaluate SHIELD on di�erent
datasets and real-world use cases, e.g., bioinformatics sequence
alignments and indoor localization. Our evaluation shows that
SHIELD accurately handles large classi�cation problems and, de-
spite being designed for wide applicability, provides competitive
performance even when compared to specialized approaches.

SecureOutsourcing.Departing signi�cantly from relatedwork,
all of SHIELD’s protocols are designed from the ground up to allow
securely outsourcing protocol execution to untrusted computation
clouds to cope with common resource limitations and challenges
in mobile scenarios. Our evaluation shows that overheads for out-
sourcing range only in the order of milliseconds of processing and
kilobytes of communication, rendering SHIELD applicable even for
very constrained and challenged deployment scenarios.

2 PROBLEM STATEMENT
2.1 Scenario and Requirements
We consider two parties, a service provider S who holds a trained
classi�cation modelM and a userU who holds a feature vector Æx .
Together,U and S want to compute F (M, Æx), i.e., classify Æx using the
modelM . Due to privacy concerns, business interests, regulatory or
legal requirements, neither party is willing to share her inputs with
the other or any third party. In this paper, we thus show howU and
S can compute F (M, Æx) using STC without learning each other’s
inputs. This problem scenario is ubiquitous in di�erent application
areas of classi�cation and pattern recognition, e.g., genetic disease
testing [37], speech recognition [59, 72], biometric authentication
[34, 58, 70], and localization [87]. Surveying these and further re-
lated works, we distill core requirements and design goals for secure
classi�cation and pattern recognition in the following.

E�ciency. E�ciency is generally of high importance in the
surveyed applications. In user-centric applications, such as speech
recognition [64] or localization [87], low latency, i.e., the time it
takes to classify a single data record, is paramount. Data mining ap-
plications [29], in contrast, require high throughput to classify large
batches of data records e�ciently. While optimizing for latency
automatically increases throughput the opposite is not necessar-
ily true, e.g., when using Single-Instruction-Multiple-Data opera-
tions [29]. To ensure the wide applicability of secure classi�cation,
we thus priorize latency over throughput where necessary.

Accuracy. Secure classi�cation protocols should ideally com-
pute results identical to their insecure counterparts. In practice,
certain degrees of inaccuracy are tolerable, e.g., in speech recogni-
tion where one is only interested in the best matching word but
not the exact probabilities [58, 64]. Since the required numerical
accuracy depends on the actual use case, secure classi�cation pro-
tocols should allow trading accuracy against performance, ideally
without the need to modify classi�cation models or feature spaces.

Mobile Users and Constrained Environments. The increas-
ing number ofmobile users, e.g., using speech-to-text services, poses
additional challenges to secure classi�cation. Due to limited pro-
cessing, communication, and energy resources, mobile users may

not be able to execute STC protocols themselves. One of the most
promising solutions to cater to such constrained deployment and
operation scenarios is the outsourcing of costly computations from
constrained user devices to more capable (cloud) peers. Without
precluding other approaches, we hence pay special attention to the
support for outsourcing in our analysis of related work as well as
in the design of our SHIELD framework.

Security.We de�ne the capabilities of the user, service provider,
and potential cloud peers to attack the computation by the semi-
honest model [51]. Shortly put, a semi-honest attacker correctly
follows the protocol but may try to infer additional information
from the transcript. Semi-honest behavior is not only the standard
choice in the related literature [20, 28, 66]. It is also a widely used
security model for outsourcing, arguing that cloud computation
providers must preserve their reputation and thus have a strong
interest in executing outsourced computations correctly [2, 44, 60].
Compared to security against stronger malicious adversaries, the
semi-honest model allows for much more e�cient protocols while
still protecting against insiders and outsiders.

2.2 Analysis of Related Work
We analyze to which extent prior works address the stated require-
ments. We �rst present related work on secure classi�cation and
pattern recognition then brie�y discuss orthogonal works. A quan-
titative evaluation and comparison against related work is provided
separately for each classi�er in Sections 5.1, 6.1, 7.1, and 8.1.

Secure Classi�cation. Vaidya and Clifton [75] present a secure
Naive Bayes classi�er based on Homomorphic Encryption (HE) but
evaluate neither performance nor accuracy. Yu et al. [81] present
HE-based protocols for SVMs which is restricted to binary features
and not evaluated. Graepel et al. [39] present an outsourcable secure
Fisher’s linear discriminant classi�er based on Somewhat Homo-
morphic Encryption (SWHE). Di�erent to our problem scenario,
their approach requires that the user holds all inputs and most
overheads are due to encryption on the user’s side and cannot be
outsourced. Bost et al. [20] present secure and e�cient hyperplane
classi�ers, discrete Naive Bayes, and decision tree based on a com-
bination of di�erent HE schemes. Chandran et al. [24] improve
upon Bost et al. using a combination of Garbled Circuits (GCs)
and Additive Secret Sharings (ASSs). Our secure hyperplane and
Naive Bayes classi�ers are improvements on these works w.r.t.
performance (up to two orders of magnitude faster), functional-
ity (e.g., continuous feature spaces), and outsourcing. A particular
focus among related works has been on secure classi�cation us-
ing ANNs: Dowlin et al. [29] present a �rst Fully Homomorphic
Encryption (FHE)-based approach that is outsourceable and e�-
cient for batched classi�cations. Following, Chandran et al. [24],
Liu et al. [52], and Riazi et al. [66] propose hybrid protocols (com-
bining GCs, Goldreich-Micali-Wigderson (GMW), and ASS) that
greatly reduce computation and communication overheads also
for single classi�cations and conceptually lend themselves to out-
sourcing. Rouhani et al. [68] present a fully GC-based protocol and
an outsourcing scheme based on Boolean secret sharing. Albeit
being designed for wide applicability, SHIELD shows competitive
performance on ANNs compared to these specialized approaches.
Using an intricate combination of FHE and GCs, Juvekar et al.’s
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approach [43] achieves another reduction of classi�cation latency
by one order of magnitude but cannot be outsourced. Finally, Mo-
hassel and Zhang [55] provide GC and ASS-based protocols for the
secure learning of ANNs.

Secure Pattern Recognition. Smaragdis et al. [72] followed
by Pathak et al. [57, 59] �rst considered secure HMM computa-
tions in the context of speech recognition. Their approaches are
based on HE which causes prohibitive overheads and numerical
inaccuracies for all but very small models and requires plaintext
knowledge for certain operations which prevents outsourcing. To
tackle the challenge of numerical accuracy in secure computation
over non-integers, Aliasgari et al. [5], Kamm et al. [45], and Demm-
ler et al. [27] propose secure �oating-point primitives. While these
primitives could be used to implement secure HMM-based pattern
recognition (still requiring additional measures to avoid under�ows
[64]), none of these works presents a concrete implementation and
the performance comparison in [27] indicates high overheads. Franz
et al. [36, 37] were �rst to build a secure HMM Forward algorithm
with reasonable performance and accuracy on real-world HMMs
based on HE and �xed-point precision arithmetic in logarithmic
representation. However, this approach cannot be fully outsourced
and scales poorly to long-term security levels due to the use of HE.
Aliasgari et al. [4] compute the HMM Viterbi algorithm in the two-
party setting using threshold-HE and their secure �oating-point
primitives [5] (discussed above). The evaluation of their two-party
setup indicates prohibitive overheads in the order of hours even
for very small HMMs with only �ve states. Finally, Ziegeldorf et al.
[86] provide an e�cient secure Forward algorithm based on GC
and ASS. We extend on some of their techniques and propose a
secure Viterbi algorithm that is faster than previous works by 9.6⇥
to 48.3⇥ and can be used in lieu of the less e�cient secure Forward
algorithm in the use cases presented in [37, 86].

Orthogonal Work. Di�erent works consider secure training of
classi�ers on horizontally or vertically partitioned data, e.g., for
Naive Bayes [76, 79] or ANNs [18]. The common assumption of
these approaches is that learned models are not privacy sensitive
and can be handed to the users who then classify locally on the
plaintext model and data. In contrast, we assume that also the clas-
si�cation model requires protection, e.g., due to privacy concerns,
business interests, or legal requirements. Finally, multiple other
works on secure classi�cation and pattern recognition are highly
specialized to single use cases. Bos et al. [19] securely predict cardio-
vascular diseases based on logistic regression. The authors assume
that the classi�er is public knowledge and only the user’s input
must be hidden during classi�cation. The proposed algorithms thus
do not apply to our setting where nothing must be learned about
the model and the input other than what is implied in the com-
puted result. Barni et al. [11] securely evaluate linear branching
programs and neural networks specialized to the classi�cation of
electrocardiograms using GCs and HE. The provided runtime esti-
mates are two order of magnitudes higher than the state of the art
and their use of HE prevents outsourcing. Finally, there have been
multiple proposals specialized to secure face recognition using HE
[34], GCs [70], or Oblivious Transfer (OT) and ASS [9]. In contrast,
we aim to implement e�cient general purpose classi�ers that apply
to a wide range of classi�cation tasks.

3 CRYPTOGRAPHIC BUILDING BLOCKS
We provide a brief overview of the basic STC techniques that build
the basis of related works and our own approach.

Oblivious Transfer. OT is a protocol between a sender S and
a receiver R which allows R to choose exactly one of many secrets
held by S without S learning R’s choice and R learning S’s other
secrets. In 1-2-OT, S holds two secret bits s0 and s1 while R holds
a choice bit r ; R obtains sr and learns nothing about s1�r while S
learns nothing about the choice r . 1-2-OT can be generalized to
1-n-OTl , where S holds n l-bit secrets and R learns only sr , r 2
{1, ...,n}. A batch ofm parallel OTs is denoted by 1-n-OTml , where
R learns one secret siri from each run 1  i  m. 1-n-OTml can
be e�ciently instantiated with t bits symmetric security using OT
Extension from only t real 1-2-OTt , the so-called base OTs [8, 42].

Garbled Circuits. Yao’s GCs [80] were the �rst generic STC
protocol, allowing two parties A and B with private inputs x and
� to evaluate F (x ,�) without either party learning the other’s in-
put. Yao’s protocol runs in three rounds: First, the function F is
represented as a Boolean circuit FBool, e.g., using special compilers
[27]. Party B garbles this circuit by encrypting and permuting the
truth table entries of each logic gate. Second, B sends the garbled
circuit F̃Bool together with its own garbled input �̃ to A, while
A obtains her own garbled input x̃ from B via OT. This ensures
that B learns nothing about A’s input x and vice versa. Finally, A
obliviously evaluates F̃Bool(x̃ , �̃) by decrypting the GC gate by gate.
Yao’s approach thus requires only a constant number of commu-
nication rounds such that its overheads are mainly determined by
the circuit size. Di�erent size-e�cient circuit building blocks have
been proposed in [41, 47]. Equally important are e�cient garbling
and evaluation functions [14, 73, 82].

Additive Secret Sharing.ASS [15, 28] uses an arithmetic circuit
representation, i.e., F is represented using addition and multipli-
cation gates over the ring Z2l (equality modulo 2l denoted by ⌘).
To evaluate such a circuit Farith., A and B �rst share their input
among each other, e.g., A with input x draws a random r 2U Z2l
and sends hxiB ⌘ x � r to B keeping hxiA ⌘ r as her own share.
Since hxiA + hxiB ⌘ x , we call hxi = (hxiA , hxiB)  S����(x)
an additive sharing of x . A and B then compute Farith.(hxi, h�i)
using only these shares. While addition can be evaluated locally due
to commutativity of addition in Z2l , multiplication gates require
an interactive protocol between A and B, which can be sped up
using precomputed Multiplication Tripless (MTs) [12, 28]. Even-
tually, A and B obtain shares hr iA , hr iB which they exchange
and add to obtain the �nal result r ⌘ hr iA + hr iB , denoted by
r  Recombine(hr i). Processing and communication overheads of
ASS-based STC are dominated by the generation of the required
MTs, i.e., by the number of multiplications in Farith.. The round com-
plexity is determined by the multiplicative depth of the arithmetic
circuit. E�cient building blocks have been proposed in [22, 23].

Hybrid STC. GCs are based on Boolean logic and thus suit logi-
cal operations. ASS, in contrast, is based on modular arithmetic and
is more e�cient for arithmetic operations. Following this observa-
tion, hybrid STC has �rst been proposed in Tasty [40] and since then
been signi�cantly improved by ABY [28] and Chameleon [66]. The
common foundation of these frameworks are e�cient conversion
protocols between Boolean and arithmetic representations.
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Figure 1: Overview of supervised classi�cation.

4 SHIELD FRAMEWORK
Our approach to secure classi�cation and pattern recognition is to
abstract from speci�c applications and instead provide a framework
of e�cient and �exibly composable building blocks upon which a
wide range of classi�ers and use cases can be realized. To this end,
we �rst brie�y survey supervised classi�cation and pattern recogni-
tion and distill core building blocks for which we propose protocols
that are secure in the semi-honest model, e�cient, accurate, and
lend themselves to outsourcing. We then build and evaluate se-
lected classi�ers to showcase the applicability and �exibility of our
SHIELD framework (Sec. 5 to 8). The entirety of our secure building
blocks and secure classi�ers complemented by our outsourcing
protocols (Sec. 9) makes up our SHIELD framework.

4.1 Overview of Supervised Classi�cation
Classi�cation is the task of predicting a class label c 2 C = {c1, .., ck }
for an unlabeled recordd . In supervised machine learning (cf. Fig. 1),
a statisticalmodelM is trained on the feature vectors Æx 1, .., Æxm 2 Rn
extracted from a labeled dataset D. Using the model M , the clas-
si�cation algorithm C : Rn ! C predicts a class c = C(M, Æx) 2 C
for d based on the feature vector Æx extracted from d . This tradi-
tional classi�cation task can be generalized to sequence labeling
where each element di of a sequence (d1, ...,dT ) should be assigned
a class. Although we can reduce this problem to a set of T indepen-
dent classi�cations, sequence labeling often involves (correlated)
time-series data where classi�cation accuracy can be increased by
considering also nearby elements. Sequence labeling is a typical
task in (temporal) pattern recognition with many real-world ap-
plications, e.g., part-of-speech tagging [59], localization [87], or
sequence alignments in bioinformatics [37].

In this paper, we consider the problem of computing C(M, Æx) se-
curely to address scenarios whereM and Æx are sensitive and held by
two distrusting parties. There are, of course, di�erent approaches
to training modelsM , building features Æx , and using them for clas-
si�cation in C . For this work, we select four classes of approaches:
i) Hyperplane classi�ers due to their ubiquity (e.g., in perceptrons,
least squares, and Fisher’s linear discriminant [17]), ii) ANNs due
to their huge success in deep learning [49], iii) Naive Bayes as a
popular baseline method [17, 20], and iv) HMMs as a representative
and widespread approach to (temporal) pattern recognition [64].
Before we provide details and secure protocols for these classi�ers
(Sec. 5 to 8), we focus on their common building blocks.

4.2 Secure Building Blocks
We distill common building blocks of the selected classi�ers then
introduce secure, e�cient, and accurate protocols for these based
on the introduced cryptographic primitives (cf. Sec. 3). First, all

classi�ers require handling real-valued inputs and outputs, e.g.,
probabilities or weight vectors, and we thus provide secure building
blocks for computing over non-integers (Sec. 4.2.1). A second ubiqui-
tous building block is computing the max and argmax (Sec. 4.2.2),
e.g., to select the most probable output class. Scalar products are
a third basic building block that is heavily used in linear classi-
�ers and ANNs, e.g., to compute convolutions (Sec. 4.2.3). A fourth
important building block is the evaluation of non-linear functions,
e.g., activation functions in ANNs or probability distributions in
HMMs (Sec. 4.2.4). Finally, dynamic-programming algorithms, such
as Viterbi, require backtracking to determine the optimal state se-
quence (Sec. 4.2.5). Tab. 7 in Appendix A summarizes all building
blocks and a security discussion is given in Appendix B.1.

4.2.1 Representation of Real Numbers. Cryptographic primitives
typically operate over discrete algebraic structures (cf. Sec. 3), rais-
ing the question how to handle non-integers. One approach is
secure �oating-point arithmetic [3, 27, 45], another is multiplying
all non-integers �i by a large constant K such that K�i 2 Z [20].
Both approaches incur high overheads (e.g., multiplying byK blows
values up to hundreds of bits in length) and often provide more
accuracy than necessary.

In SHIELD, we represent non-integers with �xed-point preci-
sion as in [23, 86]. Formally, we transform x 2 R to x

0 2 N by
�2�(x , l , s) = b2sxe mod 2l (�oat-to-integer). This encoding pre-
serves signed integer arithmetic when decoded as �2�(x 0, l , s) =
(x 0 � 2l )/2s for x 0 > 2l�1 and �2�(x 0, l , s) = x

0/2s otherwise
(integer-to-�oat). After transforming all inputs (i.e., models and
features) using �2�, all intermediate values and results are kept in
this representation. Note that the sum of two scaled values has
the same scaling and the bitlength increases by at most one, while
multiplication accumulates the scaling factor 2s and bitlengths add
up which may quickly over�ow the available bitlength l . To prevent
this, we use the secure R������ protocol from [86] to scale down
by factor 2s before any subsequent addition or multiplication.

Since �xed-point precision introduces quantization errors we
need to carefully evaluate whether our secure classi�ers remain ac-
curate. Indeed, we �nd that this approach is not su�ciently accurate
for HMMcomputationswhich involve extremely small probabilities.
In this context, Aliasgari et al. [3, 4] argue that full �oating-point
precision is required but report runtimes in the order of hours
even for small HMMs. An alternative is to compute in logspace
as proposed in [30]. Formally, we transform p 2 (0, 1] ⇢ R to an
integer in logspace p̂0 2 N by p̂

0 = �2�
�
log(p), l , s

�
with the in-

verse p = exp
�
�2�(p̂0, l , s)

�
, denoted �2�� and ��2�. We represent

log(0) = Logzero by a su�ciently small integer.

4.2.2 Secure Max and Argmax. Given an additively shared vector
hÆxi = (hx1i, ..., hxni), A����� (Prot. 5, Appendix A) securely com-
putes the maximum value (max) and its index (argmax). hÆxi is �rst
fed into n parallel garbled addition circuits to convert to garbled
values x̃i . On the garbled values, U and S e�ciently select the max
and argmax using pairwise comparisons as proposed in [47]. The
garbled results x̃⇤, ĩ⇤ are converted back to additive shares hx⇤i,
hi⇤i using the OT-based subtraction circuit proposed in [28]. Note
that computing the argmax makes up one third of the overheads
of A����� and we can leave this part out if we only need the max.
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4.2.3 Secure Scalar Products. S�����P��� (Prot. 6, Appendix A)
securely computes scalar products on additive shares in a straight-
forward manner using only ASS-based addition and multiplication
(Sec. 3) and rescaling (Sec. 4.2.1): U and S engage in n multiplica-
tions and add resulting shares locally then invoke R������ on the
result to restore the correct scaling by factor 2s as required in our
�xed-point number representation. To improve e�ciency, we batch
all messages required for the n parallel multiplications, resulting in
a total of only two rounds of communication.

4.2.4 Secure Approximation of Non-linear Functions. With the es-
tablished STC techniques (Sec. 3), we can already e�ciently com-
pute many functions used in machine learning, e.g., the identity,
binary step, recti�ed linear, or maxout activation functions for neu-
rons in ANNs. However, a wide range of other important, especially
non-linear, functions cannot be e�ciently computed, e.g., Sigmoid,
Gaussian, and SoftPlus activation functions, as well as Gaussian,
Gamma, and LaPlace probability distributions. Related works often
try to circumvent usage of these functions, e.g., Dowlin et al. [29]
construct an ANN with the Sigmoid function on the output layer
then note it is only important for training and is left out during
classi�cation. We argue that it is generally desirable to be able to
evaluate such non-linear functions and probability distributions
securely as they are important building blocks for classi�cation and
other machine learning algorithms [29, 69].

Generally, what we aim for is a building block that securely
computes a possibly secret function f at a possibly secret point x
and returns the result in secret-shared form. In the following, we
present three such building blocks with di�erent characteristics:
i) a generic yet e�cient approach for the evaluation of arbitrary
secret functions at secret points, ii) a more e�cient approach for the
evaluation of arbitrary secret functions at evaluation points known
by one party, iii) a highly e�cient protocol for the evaluation of
Gaussians with secret parameters at secret evaluation points.

Case 1: Secret arbitrary f and secret x . We approximate an
arbitrary f : R! R at point x 2 R by k polynomials �i (x) 2 R[X ]
of degree d for x 2 [ri , ri+1) with (�1, r1)[ ...[ [lk ,1) = R where
the choice of intervals and polynomials minimizes an adequate error
measure. P���F���A����� (Prot. 7, Appendix A) is a secure proto-
col for this task taking as input the shared evaluation point hxi and
the shared approximation parameters hPf i = (ha11i, ..., hakd i, hr1i,
..., hrk i). It transforms the inputs to garbled values using an addition
circuit, uses the circuit from [62] to select�i such that ri  x < ri+1,
and converts the coe�cients aid , ...,ai0 of �i to additive shares. To
e�ciently compute h�i (x)i on hxi and h�i i = (haid i, ..., hai0i) (de-
noted by h�i (x)i  E���P���(h�i i, hxi)), we propose a tree-based
scheme that requires dlog2(d) + 1e rounds of multiplications by
evaluating �i (x) up to a2i x2

i
in round i . Applying rescaling after

each round of multiplications results in a total of 2(dlog2(d)e + 1)
communication rounds. Finally, shares of the approximated result
hf 0(x)i = E���P���(h�i i, hxi) are returned to U and S .

Case 2: Secret discrete f and known x . We treat the sce-
nario where the evaluation point x is known to one party and
the target function f is discrete, e.g., in Naive Bayes with dis-
crete features or HMMs with discrete emissions (note that a con-
tinuous function f could be easily discretized by subsampling).
In related work [37, 61], this problem is solved using HE, i.e., U

encrypts her choice xi in m selectors of which only the i
th en-

crypts a one and all others encrypt zero. S can then obtain an
encryption of f (x) by multiplying the selectors pairwise against
f (x1), ..., f (xm ) and summing the results using the HE scheme, i.e.,
Jf (x)K = J0K�Jf (x1)K�...�J1K�Jf (xi )K�...�J0K�Jf (xm )K (J·K de-
notes encryption, � addition and � multiplication on ciphertexts).
In comparison, our protocol O�F���A����� (Prot. 8, Appendix
A) is much more e�cient since we substitute the expensive HE
operations by OT which can be realized using highly e�cient sym-
metric cryptography primitives and one-time-pad operations (cf.
Sec. 3). At the start of O�F���A�����, U and S hold shares of
the m function values hf (X )i = (hx1i, ..., hxmi) and U holds the
evaluation point x 2 {x1, ...,xn } in clear. In the �rst step, S blinds
each of its share with the same random value rS 2R Z2l , i.e., com-
putes hf (xi )iS + rS . Both parties then engage in 1-m-OTl on the
m blinded shares (hf (x1) + rS iS , ..., hf (x1) + rS iS ) from which U

learns hf (x) + rS iS and nothing else while S learns nothing about
xi .U computes her share hf (x)iU ⌘ hf (xi + rS iS + hf (xi )iU while
S simply sets hf (x)iS ⌘ �rS .

Case 3: Secret Gaussian f and secret x .We consider the case
where f is the popular Gaussian distribution Nµ,� with secret
parameters µ,� and secret evaluation point x . Though we could
use P���F���A�����, we design the special-purpose but more
e�cient G������� protocol (9, Appendix A) since the frequent use
of Gaussians justi�es the additional handwork. We �rst transform
to log-space, i.e., log(N(µ,� )(x)) = log((2�� 2)�1/2)+(x�µ)2/�2� 2.
µ,x and 1/�2� 2 are given as normal additive shares and � is shared
in log-space. U and S then compute (x � µ)2, multiply by 1/�2� ,
and �nally subtract log(� ) using only the additive shares. We drop
the term log((2� )�1/2) since it is constant and thus irrelevant for
classi�cation. Apart from inexpensive local operations, G�������
requires only two secure multiplications and rescaling operations
which is more e�cient than applying P���F���A�����. When
high accuracy is required, G������� is also more e�cient than
running O�F���A����� on a �ne-grained subsample of N(µi ,�i )
and also more general since x can be secret.

We note that tailoring protocols, e.g., to the special non-linearities
typically involved in neural networks as proposed in [29, 55], yields
potentially more e�cient protocols. Our aim is, however, to present
a widely applicable framework rather than optimize our approach
towards a single classi�er. Our �rst two protocols for approximation
of non-linear functions are in line with this goal, i.e., we deliberately
trade performance improvements of speci�c protocols against the
wider applicability of our general protocols.

4.2.5 Backtracking. Backtracking is a common step in dynamic-
programming algorithms (e.g., for determining the optimal state
sequence in the HMM Viterbi algorithm) and we propose the B����
����� (Prot. 10, Appendix A) to compute this task securely. We
assume that only U should learn the �nal result, the case where
S or both should learn the result being straightforward. At the
start, the state matrix M 2 NNxT together with the �nal state s⇤T
is additively shared amongU and S . First, S sends hs⇤T iS such that
U is able to recombine s⇤T . Starting from t = T , U then iteratively
obtains hs⇤t�1iS = hMs⇤t ,t iS via 1-N -OTl from S and recombines
s
⇤
t�1 locally. After T sequential OTs, U thus learns S⇤ = s⇤1 , ..., s

⇤
T .
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Protocol 1 Secure H��������� protocol based on ASS and GC.
Input: U has feature vector Æx 2 Rn

S has k models M1 = Æw1, ..., Mk = Æwk with Æw j 2 Rn
Output: Class c⇤ = CH�perplane

�
(M1, ..., Mk ), Æx

�
Initialization:

U : hxi iU = �2�(xi ), hw j,i iU = 0 8i = 1...n, 8j = 1...k
S : hxi iS = 0, hw j,i iS = �2�(w j,i ) 8i = 1...n, 8j = 1...k

Compute distance to each hyperplanes:

U , S : hzj i  S�����P���
�
h Æx i, h Æw j i

�
8j = 1...k

Determine most probable class:

U , S : hc⇤ i  A�����
�
hz1 i, ..., hzk i

�
U , S : c⇤  �2�(R��������(hc⇤ i))

4.3 Implementation and Evaluation Setup
To thoroughly quantify performance and accuracy of SHIELD,
we implement all classi�ers, evaluate them on popular real-world
datasets from the machine learning community and compare their
performance against the fastest approaches in related work.

Implementation. We implement all secure primitives and clas-
si�ers in C++ relying on the OT extension library [33] and the
ABY framework [32] for creating and evaluating GCs as well as
ASS-based multiplication. Besides the OT extensions library and
the ABY framework, which are multithreaded, the rest of our im-
plementation realizes only obvious optimizations, e.g., batching of
trivially parallel loops in the classi�ers.

Experimental Setup. We perform experiments between two
desktop machines (Ubuntu 14.04 LTS, Intel i7-4770S with 4 cores at
3.10GHz, 16GB RAM) connected over a 1Gbit/s LAN. We use l =
64 bit for our �xed-point number representation (cf. Sec. 4.2.1) and
set the symmetric security level t to 128 bit for long-term security.
Our results are averaged over 30 independent runs.

5 HYPERPLANE CLASSIFIERS
Hyperplane classi�ers [17] compute a linear combination of fea-
tures in Æx with a trained weight vector Æw , i.e., CH�per (M, Æx) =
f (Õn

i=1wi · xi ) = f ( Æw · Æx) where the function f maps the inner
product to two classes. The classi�cation model is thus given by
M = ( Æw, f ). We can visualize hyperplane classi�ers by interpret-
ing Æw as the normal vector of a hyperplane Æw · Æx � b = 0 that
splits the n dimensional feature space into two parts. Hyperplane
classi�ers can be generalized to non-linearly separable data using
the kernel trick [71] and to data with multiple classes through a
one-versus-all approach, i.e., training k models where model M j
decides whether a given feature vector Æx belongs to class c j 2 C
[20] by CH�per (M1, ...,Mk , Æx) = argmaxc j 2C

�
Æw j · Æx

�
. With these

de�nitions, we can model classi�ers with linear predictor functions,
such as SVMs, (multinomial) logistic regression, least squares, per-
ceptrons, and Fisher’s linear discriminant [17].

H��������� (Prot. 1) securely computes CH�per (M1, ...,Mk , Æx)
where S holds the k modelsMj and theU holds the feature vector Æx .
In the �rst step, the userU and service provider S initialize shares of
the weight vectors Æw j and feature vector Æx : Each party uses �2� to
initialize shares of its own inputs and sets shares of the other party’s
inputs to zero (we denote this as a dummy sharing since there is no

Security WBCD Credit HAR
level t 1 ms 40 ms 1 ms 40 ms 1 ms 40 ms

Bost et al. [20] 80 bit 0.22 0.47 0.30 0.56 0.72 1.01
EzPC [24] 128 bit 0.10 0.30 0.10 0.30 - -
H��������� (this work) 128 bit 0.02 0.35 0.02 0.39 0.03 0.73

Table 1: Comparison of runtimes [s] of secure hyperplane
classi�ers on di�erent datasets.

interaction betweenU and S and no values are actually shared).U
and S then compute one secure scalar product (using S�����P���)
for each pair Æw j , Æx in parallel in one round of communication to
improve performance.U and S then invoke A����� on the shared
scalar products hzj i to determine the target class c⇤ 2 N which can
be recombined byU , S , or both. Note that c⇤ is actually the index
of the target class cc⇤ 2 C and for simplicity we assume from now
on w.l.o.g. C = {1, ...,k}. Security guarantees of H��������� are
discussed in Appendix B.2.

5.1 Evaluation
We compare H��������� against Bost et al. [20] and EzPC [24]
on the Wisconsin Breast Cancer Diagnostic (WBCD) dataset [78]
with 32 features 2 classes, the Credit Approval (Credit) dataset [25]
with 48 features and 2 classes, and the Human Activity Recognition
(HAR) dataset [65] with 561 features and 6 classes.

Runtime. We measure runtimes in the o�ine and online phase
for two di�erent networks with Round Trip Time (RTT) of 1ms
(LAN) and 40ms (WAN) (cf. Tab. 1). On average, H��������� is
17.02⇥ faster than Bost et al.’s approach and 5⇥ faster than EzPC
in the LAN setting and and only slightly slower in the WAN setting.
Notably, H��������� provides long-term security while Bost et al.
provide only an equivalent of 80 bit symmetric security which is
widely considered insecure [10]. H��������� is especially e�cient
in the critical online phase improving by 21.01⇥ (LAN) and 1.54⇥
(WAN) on Bost et al. a�ording very low latency in end-user sce-
narios where classi�cations are performed sporadically using idle
times for precomputations.

Communication. On all three datasets, H��������� requires
more communication than the related approaches, e.g., 256.55 kB
vs. 54.55 kB (Bost et al.) and 36.00 kB (EzPC) on the Credit dataset.
H���������’s communication overheads are almost completely
due to the precomputation of MTs which could be reduced using
the optimized Du-Attalah protocol [66] (published and proposed in
parallel to this work). Furthermore, most of H���������’s commu-
nications falls into the o�ine phase while the online phase requires
only 14.16 kB compared to 41.16 kB in Bost et al.’s approach.

Accuracy. We measure the numerical accuracy of H���������
by classifying 300 randomly selected test vectors and comparing
against a reference implementation that operates on double preci-
sion plain texts. We observe a very low average absolute numerical
error of 2.46 ⇥ 10�7 (� = 2.71 ⇥ 10�7) and �nd that H���������
predicts exactly the same classes as the insecure reference imple-
mentation. From this, we conclude that the classi�cation accuracy
of H��������� is thus only limited by the quality of the classi�ca-
tion model; tuning models is not the goal of this work.

Summary.H��������� is a simple, fast, and secure protocol for
any classi�er with a linear predictor function. In the next section,
we generalize H��������� to full-�edged ANNs.

360



SHIELD: E�icient and Secure Machine Learning Classification ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Protocol 2 The secure ANN classi�er protocol.
Input: U has feature vector Æx 2 Rn

S has ANN M = ( Æw1
1, Æw1

2 ..., Æwk
L, �1, ..., �L )

Output: Class c⇤ = CANN
�
M, Æx

�
Precomputation:

S : Pl = (al11, ..., alkd ), (r
l
1 , ..., r

l
k ) Approx(�l , k, E) 8l = 1...L

Initialize shares:
U : h Æw l

j,i iU = 0, hxi iU = �2�(xi ), hPl iU = 0 8l, i, j

S : hw l
j,i iS = �2�(w (l )

j,i ), hxi iS = 0 8l, i, j
hPl iS = �2�(al11), ..., �2�(alkd ), �2�(r

l
1 ), ..., �2�(r lk ) 8l = 1...L

Feed-forward through all layers l = 1...L:

U , S : he li i  S�����P���
�
h Æ� l�1 i, h Æw l

i i
�

8i = 1...ml

U , S : h�li i  P���F���A�����
�
he li i, h�l i

�
8i = 1...ml

Determine most probable class:

U , S : hc⇤ i  A�����
�
h�L1 i, ..., h�Lk i

�
U , S : c⇤  �2�(R��������

�
hc⇤ i

�
)

6 ARTIFICIAL NEURAL NETWORKS
ANNs [16, 26, 69] are composed of many individual arti�cial neu-
rons organized in multiple layers. Any single neuron computes a
weighted sum of its inputs, the excitation level, and �res when it
exceeds a threshold. In feed-forward networks, a neuron on an in-
termediate layer l takes inputs only from neurons on the previous
layers l � 1 and passes its output on to neurons on the subsequent
layer l + 1. The classi�cation result is then read from the output
layer l = L with one neuron per class. Feed-forward ANNs can be
modeled as a function that is composed of the activation functions
of the individual neurons [69, pp. 567-570]: The ith neuron on layer
l � 1 is modeled by�li = �

l (Õml�1
j=1 w

l
j,i ·�l�1j ) = �

l ( Æw l
i ·Æ� l�1)where

Æw l
i are the synaptic weights between the ith neuron on the lth layer

and all neurons on the layer l � 1, Æ� l�1 the outputs of those neu-
rons, and �l (·) the activation function for all neurons on layer l . An
ANN model is thus de�ned by M = ( Æw1

1 , Æw1
2 ..., ÆwL

k ,�
1, ...,�L) and

the classi�cation rule is given byCANN (M, Æx) = argmaxj 2C �Lj . In
its simplest form, an ANN consists of a single neuron which cor-
responds almost exactly to the previously introduced hyperplane
classi�er. A single-layer perceptron, just as hyperplane classi�ers, is
limited to binary classi�cation problems and linearly separable data
[69, pp. 573-574]. Building ANNs with many neurons and multiple
hidden layers, referred to as deep learning, overcomes this limitation
and tackles much more complex classi�cation problems.

A�� (Prot. 2) computes ANNs securely. S holds the ANN and �rst
computes approximation parameters for the activation functions
�
l for use in P���F���A����� (cf. Sec. 4.2.4). As before for H�����

�����,U and S then dummy-share all model parameters and inputs.
On these shares,U and S �rst securely compute the excitation level
e
l
i (for each layer l = 1...L and each of neuron i = 1, ...,ml ) using
S�����P��� then evaluate the (secret) activation function �

l on
the shared evaluation point heli i using P���F���A�����, obtaining
additive shares of the neuron’s output, i.e., h�li i. Note that we can
compute the output of all neurons on the same layer in parallel
and batch communication to increase performance. Finally, U and

Sec. Arbit. Out- MINST
level t act.func. sourc. 1 ms 40 ms 100 ms

Cryptonets [29] 128 bit 7 7 297.65 297.73 297.85
DeepSecure [68] † 128 bit 3 3 9.67 - -
SecureML [55] ‡ 0 bit 7 (3) 4.88 - 18.37
Chameleon [66] ?† 128 bit 3 (3) 2.70 - 7.90
MiniONN [52] 128 bit 3 (3) 1.28 - -
EzPC [24] 128 bit 3 (3) 0.60 1.60 -
Gazelle [43] 128 bit 3 7 0.03 - -
A�� (this work) 128 bit 3 3 0.60 4.98 12.08

Table 2: Comparison of runtimes [s] of secure ANN classi-
�ers on the MNIST dataset for di�erent network scenarios.
? Requires a trusted third party. † Similar network but uses
ReLU activation function. ‡ Slightly more complex network
with three fully-connected layers.

S invoke A����� on h�L1 i,...,h�Lk i to determine the target class c⇤.
We discuss security of A�� in Appendix B.2.

6.1 Evaluation
Since code for related works is not (yet) open-source, we compare
directly against the results from the respective papers but note
that they were obtained on comparable yet di�erent machines. To
maintain comparability as far as possible, we select only those
results obtained on the same dataset, i.e., MNIST [50], and with the
same convolutional neural network (CNN) architecture described
in the initial work of Dowlin et al. [29].

Runtime. Tab. 2 summarizes the runtimes of A�� and pre-
vious works for classi�cation of a single image. The Cryptonets
approach [29] optimizes for throughput and allows batching up
to 4096 images into one ciphertext at no additional costs. Being
based on FHE, Cryptonets is a two-rounds protocol and thus scales
nicely to networks with higher latencies. FHE, however, puts high
load on the user which cannot be outsourced as we will discuss
further in Sec. 9. DeepSecure is a purely GCs-based approach and
shows how to securely outsource the client’s protocol part to an
untrusted third party. In comparison, A�� has a 16.1⇥ lower classi-
�cation latency. SecureML [55], Chameleon [24], andMiniONN [52]
are hybrid approaches that build on di�erent combinations of OT,
GC, ASS, HE, and GMW. SecureML only considers linear activa-
tion functions, while Chameleon depends on a semi-trusted third
party dealer and thus provides weaker security guarantees than
the other approaches. None of these approaches explicitly presents
outsourcing protocols, although the underlying STC techniques
conceptually lend themselves to outsourcing. In comparison, A��
is 8.1⇥, 4.5⇥, and 2.1⇥ faster and facilitates highly e�cient secure
outsourcing (cf. Sec. 9). EzPC [24] is a competitive approach that
outperforms A�� in slower networks (while SHIELD, in turn, out-
performs EzPC on hyperplane and Naive Bayes classi�ers). The
most recent approach, Gazelle [43], outperforms A�� by 20⇥ but
cannot be outsourced due to its use of FHE.

Communication. The Cryptonets approach requires 372.20MB
of communication to classify up to 4092 images but unfortunately
requires the same high amount for classi�cation of a single im-
age. While no communication overheads are reported for SecureML,
DeepSecure requires evenmorewith 791.00MB.MiniONN, and EzPC
reduce communication to 70.00MB and 47.60MB, respectively, for
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a single image. Chameleon optimizes especially for low communica-
tion and manages to reduce overheads to 8.60MB. Using highly ef-
�cient packing and Single-Instruction-Multiple-Data (SIMD) strate-
gies, Gazelle reduces communication to 0.50MB. With 76.36MB,
A��’s overheads are one and two order of magnitude higher than
Chameleon’s and Gazelle’s, but competitive w.r.t. the other ap-
proaches. As for H���������, A��’s communication overheads
are mostly due to MT precomputation and could be reduced by em-
ploying the improved Du-Attalah protocol [66] for precomputing
MTs which is optimized for low communication overheads. Pre-
computing MTs also renders the online phase of A�� very e�cient
with only 2.20MB of communication.

Accuracy. We measure the numerical accuracy of A�� by clas-
sifying 300 randomly selected test vectors and compare against a
reference implementation on plaintexts. We measure an average
absolute numerical error of 8.60 ⇥ 10�2 (� = 7.42 ⇥ 10�2) which
is four orders of magnitude higher than for H���������, but still
low enough such that A�� predicts exactly the same classes as
the reference implementation. The increase is due to the higher
multiplicative depth of ANNs, i.e., the numerical errors grow with
each layer. Networks with many more layers may thus require a
deterministic rounding strategy, e.g., as proposed in [35].

Summary. A�� is a secure protocol for feed-forward neural
networks optimized for classi�cation latency and support for arbi-
trary (non-linear) activation functions. In the next two section, we
now focus on approaches that are based on probability theory.

7 NAIVE BAYES
A Naive Bayes classi�er is a conditional probability model that
assigns probabilities P(C = c j |X = Æx) for all classes c j 2 C to all
possible feature vectors Æx [69, Chap. 14]. Classi�cations are com-
puted by selecting the most probable class, i.e., CBa�es (M, Æx) =
argmaxc j 2C p(c j |Æx). Since it is often infeasible to learn the poste-
riors p(c j |Æx) directly from the data [7], e.g., for very large or high-
dimensional feature spaces, the Bayes theorem is usually applied to
compute the posteriors from the likelihoods p(Æx |c j ), the priors p(c j ),
and the evidence p(Æx) which can be better learned from the train-
ing data D, naively assuming features xi 2 Æx (modeled by random
variable Xi ) to be conditionally independent from each other fea-
ture, i.e., P(Xi ,X j |C) = P(Xi |C) · P(X j |C). The classi�cation model
M is then given by the distribution of the likelihoods, priors, and
evidence, i.e., M = (P(X1 |C), ..., P(Xn |C), P(C), P(X )). This classi-
�er is called naive because the central assumption of conditional
independence actually does not hold for most real-world datasets.
Perhaps surprisingly, Naive Bayes classi�ers have been shown to
still provide good results in real-world applications [67, 83].

N����B���� (Prot. 3) is a secure Naive Bayes classi�er in logspace
representation. Since secure multiplications are expensive and in-
troduce numerical errors, we transform computations of the posteri-
ors into logspace, i.e., log(p(c j |Æx) =

Õn
i=1 log(p(xi |c j )+ log(p(c j ))�

log(p(xi )). The representation is advantageous since it contains
only additions which can be computed much more e�ciently and
accurately over additive shares. Note that even on plaintexts, Naive
Bayes is often computed in logspace to increase the numerical sta-
bility. At the start of N����B����,U holds the feature vector Æx and S

Protocol 3 Secure N����B���� protocol based on ASS and GC.
Input: U has feature vector Æx

S has Naive Bayes classi�cation model M = (P (X |C), P (X ), P (C))
Output: Class c⇤ = CNai�eBa�es

�
M, Æx

�
Initialize shares:

U : hp̂(c j )iU = Logzero hp̂(xi |c j )iU = Logzero 8i, j
S : hp̂(c j )iS = �2��(p(c j )) hp̂(xi |c j )iS = �2��(P (Xi = xi |c j )) 8i, j

Compute posteriors:
U , S : hp̂(xi |c j )i  O�F���A�����(hP (Xi |c j )i, xi ) 8i, j

U, S : hp̂(c j | Æx )i =
n’
i=1
hp̂(xi |c j )i + hp̂(c j )i 8j

Determine most probable class:

U , S : hc⇤ i  A�����
�
hp̂(c j | Æx i)

�
U , S : c⇤  R��������

�
hc⇤ i

�

Security WBC Nursery Audiology
level t 1 ms 40 ms 1 ms 40 ms 1 ms 40 ms

Bost et al. [20] 80 bit 0.38 0.75 0.81 1.90 3.35 5.79
EzPC [24] 128 bit - - 0.10 0.40 1.50 2.90
N����B���� (this work) 128 bit 0.02 0.27 0.02 0.31 0.03 0.58

Table 3: Comparison of runtimes [s] of secure Naive Bayes
classi�ers on di�erent datasets.

has the Naive Bayes classi�cation model consisting of the probabil-
ity mass functions P(X |C), P(X ), P(C). S �rst transforms the priors
p(c j ) and likelihoods p(xi |c j ) to scores with �xed-point precisions
using �2�� and both parties initialize shares of the priors hp̂(c j )i
using dummy sharing. In the next step,U and S useO�F���A�����
to compute shares hp(xi |c j i of the likelihoods. Computing shares
of the posteriors hp̂(c j |Æx)i is then a simple matter of summing the
shares of the likelihoods and the shared priors. Finally, U and S

determine shares of the class that maximizes the posterior scores
using A�����. Note that we drop the evidence p(xi ) since it is
constant for a �xed feature vector Æx and thus only linearly scales
the scores p̂(c j |Æx)which does not change the argmax c⇤. A security
discussion of N����B���� is given in Appendix B.2.

7.1 Evaluation
We compare N����B���� against Bost et al. [20] and EzPC [24] on
the originalWisconsin Breast Cancer (WBC) dataset [77] (9 features,
2 classes), the Nursery dataset [74] (9 features, 5 classes), and the
Audiology dataset [63] (70 features, 24 classes).

Runtime. We measure o�ine and online runtimes in LAN and
WAN settings (cf. Tab. 3). As forH��������� andA��,N����B����
performs best in the fast LAN scenario where it outperforms related
works by 63.47⇥ (Bost et al.) and 27.5⇥ (EzPC) on average while
still achieving a notable improvement of 6.24⇥ and 3.16⇥ in the
WAN scenario. We observe that a large fraction of the overheads
in Bost et al.’s approach is due to onetime overheads which would
amortize over larger batches of classi�cations. Not considering
these onetime overheads, our N����B���� still achieves a 37.24⇥
and 4.11⇥ higher throughput than Bost et al. for the LAN andWAN
scenario, respectively. N����B����’s improvements are due to the
e�cient O�F���A����� primitive for sampling probability mass
distributions and the hybrid protocol design based on ASS and GCs
in contrast to the costly HE primitives used in Bost et al.’s approach.
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Communication. N����B���� requires signi�cantly less com-
munication than the other two approaches, e.g., only 0.74MB on the
Audiology dataset compared to 1.91MB for Bost et al. and 37.00MB
for EzPC. Note that communication for Bost et al. approximately
triples when using 3072 bit keys, i.e., an equivalent to the 128 bit
symmetric security of N����B���� and EzPC.

Accuracy. We measure an average absolute numerical error
of 6.37 ⇥ 10�8 (� = 6.70 ⇥ 10�8) over 300 random test cases, i.e.,
results are practically indistinguishable from a reference implemen-
tation operating with double precision on plaintexts. The reason for
the high accuracy of N����B���� is the logspace transformation
which replaces multiplications by additions which are numerically
more accurate and stable in our number representation.

Summary. N����B���� clearly outperforms prior works due to
the use of e�cient ASS-techniques in log-space. Next, we apply
these techniques to more complex problems on HMMs.

8 HIDDEN MARKOV MODELS
An HMM is de�ned by the tuple � = (S,A,V ,B,� ). The set S =
{s1, ..., sN } are the possible internal states of the HMM with A 2
RN⇥N the state transition matrix, i.e., aji = p(si |sj ) is the probabil-
ity that the HMMmoves from state sj into state si . The states of the
HMM are hidden and cannot be observed directly but only inferred
from the emissions the HMM outputs depending on its current state.
The alphabet of emissions is de�ned by V = {�1, ...,�M } with B 2
RN⇥M the emission probability matrix, i.e., bi (�j ) := bi j = p(�j |si )
is the probability that the HMM emits �j in state si . Finally, the
initial state distribution � 2 RN de�nes the probabilities �i = p(si )
that the HMM’s initial state is si . The output of the HMM is a se-
quence of emission symbols O = o1...oT 2 V 1⇥T referred to as an
observation sequence (each oi could be viewed as a separate feature
vector Æx i in the simple classi�cation setting).

Two main problems are associated with HMMs. Filtering asks
for the probability P(O |�) that an HMM � generated an observa-
tion sequence O . Filtering is solved using the Forward algorithm,
which i) initializes �1(i) = �i · bi (o1),8i , ii) recursively computes
the forward variables �t (i) =

ÕN
j=1 �t�1(j) · aji · bi (ot ),8t , i , and

iii) outputs P(O |�) = ÕN
i=1 �T (i). Decoding, searches for the most

probable sequence of hidden states S⇤ of the HMM � for emitting
the observation sequence O and its probability p(O, S⇤ |�). This
problem is solved by the Viterbi algorithm, which i) initializes
�1(i) = �i · bi (o1),8i (as before), ii) recursively computes the for-
ward variables �t (i) = maxNj=1 �t�1(j) · aji · bi (ot ),8t , i and the
backtracking matrix �t (i) = argmaxNj=1 �t�1(j) · aji ,8t , i , and iii)
�nally outputs the optimal state sequence s⇤t�1 = �t (s⇤t ),8t and its
probability P(O, S⇤ |�), s⇤t = argmaxNi=1 �T (i).

In both algorithms, the probabilities �t (i) decrease with each
iteration which quickly causes under�ows and numerical instabil-
ity [30, 64]. Rabiner [64] proposes to normalize �t (i) after each
iteration while Durbin et al. [30] propose to compute in logarithmic
space.We refer to probabilities in logspace as scoreswith log(p(O |�))
and log(p(O, S⇤ |�)) the Forward and Viterbi score, respectively.

V������ (Prot. 4) computes the Viterbi algorithm in logspace se-
curely using E���P���, M��A�����, and B�������� as building
blocks. At the start,U holds the observation sequenceO = o1, ...,oT

Protocol 4 Secure V������ protocol based on ASS, GC, and OT.
Input: U has O 2 V 1⇥T , S has � = (S, V , A, B, � )
Output: Viterbi score P̂ (O, S⇤ |�) and Viterbi path S⇤ 2 S1⇥T

Initialization:
U , S : hb̂i (ot )i  O�F���A�����

�
ot , Bi

�
8t, i

U : h�̂i iU = Logzero hâji iU = Logzero 8j, i
S : h�̂i iS = �2��(�i ) hâji iS = �2��(aji ) 8j, i

U, S : h�̂1(i)i = hb̂i (o1)i + h�̂i i

Recursion: For 2  t  T , 1  i  N
U, S : h Æ� 0t (i)i =

�
h�̂t�1(1) + â1i i, ..., h�̂t�1(N ) + âNi i

�
U , S : h�̂ 0t (i)i, h�t (i)i  M��A�����

�
h Æ� 0t (i)i

�
U, S : h�̂t (i)i = h�̂ 0t (i)i + hb̂i (ot )i

Termination:
U , S : hP̂ (O, S⇤ |�)i, hsT i  M��A�����

�
h�̂T (1)i, ..., h�̂T (N )i

�
U ( S : P̂ (O |�) R��������

�
hP̂ (O |�)i

�
U , S : S⇤  B��������(h� i, hs⇤T i)

and S holds the HMM �. In the initialization phase, U and S com-
pute shares of the emission scores b̂i (o1) via E���P��� and add
the dummy shares of the initial state scores �̂i locally. The goal
of the following recursion phase is to compute the forward vari-
ables �t (i) in logspace, i.e., the probability of the optimal par-
tial state sequence given only the partial observation sequence
o1o2...ot up to time step t . Additionally, we need to keep track of
this optimal state sequence in the variables �t (i). These steps are
given in logspace by �̂t (i) = maxsj 2S

�
�̂t (j) + âji

�
+ b̂i (o1) and

�t (i) = argmaxsj 2S
�
�̂t (j) + âji

�
and can be e�ciently combined

inM��A����� such thatU and S only need to locally add hb̂i (ot )i
to obtain the desired additive sharing h�̂t (i)i of the forward scores
�̂t (i). Since we also obtain additive shares of the maximum argu-
ment from M��A�����, we can directly set the entry �t (i) in the
backtracking matrix �. Finally, U and S �rst invokeM��A�����
on �̂T (1), ..., �̂T (N ) to compute the Viterbi score P̂(O, S⇤ |�) and the
optimal end state s⇤T , then invoke B�������� on s⇤T and h�i to letU
reconstruct the optimal state sequence S⇤ that led to s⇤T . We discuss
the security of V������ in Appendix B.2.

8.1 Evaluation
We evaluate V������ in three use cases, i) secure bioinformatics
services, ii) secure speech recognition, and iii) secure localization.

Secure Bioinformatics Services.We consider the secure bioin-
formatics service described in [37, 86] where we match a given pro-
tein sequence against the Pfam [1] database of HMMs that model
protein families (e.g., relating to certain phenotypes and diseases).
Note that Pfam contains pro�le HMMs that feature a special ar-
chitecture and sparsely connected state space which signi�cantly
speeds up Forward and Viterbi computation. Since Forward and
Viterbi compute identical matches in this use case, we also consider
the Forward algorithm in our comparison. As summarized in Tab. 4,
V������ outperforms Franz et al.’s Forward by 14.11⇥ and Viterbi
by 48.29⇥ and requires 2.25⇥ and 1.28⇥ less communication even
despite providing higher security–using only 80 bit of security re-
duces V������’s overheads by another 37 %. Priward [86] is a more
e�cient secure Forward algorithm that is based on ASS and GC
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Sec. SH3_1 Ras BID IDO 3HBOH
level t L=48 L=162 L=192 L=408 L=689

Franz et al. [35] (Fwd.) 80 bit 22.0 298.0 449.0 - -
Franz et al. [35] (Vit.) 80 bit 94.0 933.0 1357.0 - -
Priward [86] (Fwd.) 128 bit 13.4 137.4 187.8 857.5 2310.6
V������ (this work) 128 bit 1.8 20.8 28.4 142.2 375.6

Table 4: Comparison of runtimes [s] of secure Bioinformat-
ics use case on the Pfam database. L denotes the length of a
pro�le HMM with a total of N = 3L + 4 states.

Security N T Runtime Comm.

Pathak et al. [59] 80 bit 5 96 � 785.0 s -
Aliasgari et al. [4] (2PC) 80 bit 6 96 > 400min -
Aliasgari et al. [4] (MPC) 2/3 honest 6 96 ⇡ 23.0 s -
V������ (this work) 128 bit 10 100 2.4 s 68.12MB

Table 5: Comparison of secure Viterbi protocols on fully con-
nected HMMs with N states and T observations.

similar as V������. Still, V������ is 5.67⇥ faster and requires 4.74⇥
less communication by replacing Priward’s complex logsum primi-
tive by our highly e�cient A����� primitive. Finally, we measure
a low relative numerical error of 2.7 ⇥ 10�2 % averaged over all
models and sequences.

Secure Speech Recognition. We consider the secure speech
recognition use case proposed in [4, 59] where HMMs encode short
words and the observation sequence an utterance. In contrast to
the previous use case, HMMs are now fully connected. We compare
runtimes in Tab. 5. Pathak et al. [59] securely compute Forward
and Aliasgari et al. [4] compute Viterbi in the two- and multi-party
setting on very small HMMs and only with short-term security. On
an HMM with more states (note that the complexity of the For-
ward and Viterbi algorithms is quadratic in N ), considering more
observations (complexity is linear in T ) and at a much higher secu-
rity level, V������ still outperforms these works by 327⇥ (Pathak
et al.), 10 000⇥ (Aliasgari et al.’s two-party setting), and 9.58⇥ (Alias-
gari et al.’s multi-party setting). Aliasgari et al. justify the huge
overheads of their two-party protocol arguing that the HMM itself
must be hidden even from the service provider and stored only in
encrypted form using expensive threshold-HE. Notably, this is a spe-
cial case of our more general outsourcing problem scenario (cf. Fig.
2, Sec. 2.1) and is thus also be covered by V������ as detailed in sec-
tion 9. Since previous works [4, 59] do not evaluate communication
overheads, we cannot provide a comparison. Finally, we measure a
very low relative numerical error of 9.73 ⇥ 10�6 % averaged over
models and sequences with di�erent length, i.e., N = 10, ..., 100
and T = 10, ..., 100. The three order of magnitudes lower error is
due to the signi�cantly smaller model sizes and sequence lengths
compared to the previous bioinformatics use case.

Secure Localization. In [87], users are securely tracked by
matching signal measurements against an indoor signal propaga-
tion and human movement model using a secure Viterbi algorithm.
The authors aim to provide fresh location updates every 10 s and
scale the underlying HMM accordingly to N = 160 states with
at most N 0 = 5 predecessors. In contrast, V������ (we substitute
O�F���A����� by G������� to compute emission probabilities
according to [87]) can compute updates at the same frequency on
much larger HMMs of N = 900 states with N

0 = 90 predecessors
which greatly increases the localization accuracy as the indoor state
space can be segmented into �ner parts (as we have more states N
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Figure 2: U wishes to classify data Æx by S ’s model M but
cannot execute STC protocols due to resource constraints.
SHIELD allows securely outsourcing these computations.

available) and the human mobility model can be much more re�ned
(since we may consider more predecessors N 0).

Summary. V������ is a highly e�cient secure protocol for
HMM-based pattern recognition with applications in di�erent do-
mains. It is feasible on very large models but may overtax mobile
users. With outsourcing, we propose a solution in the next section.

9 OUTSOURCING
Arguably, secure classi�cation could be too costly to be executed
in constrained environments. As a solution, we show howU and S
can securely outsource computations to untrusted clouds according
to Fig. 2: 1) UserU and service S engage in a short preprocessing,
2) individually outsource encrypted data to the cloud peers, 3) wait
for the cloud peers to obliviously compute the encrypted result, and
4) decrypt and postprocess the result.Besides unburdeningU and S
from most overheads, outsourcing a�ords disruption tolerance, i.e.,
U and S need to be online and available only at the start and end of
the computation. To present a real alternative for mobile users, an
outsourcing protocol must ful�ll the following requirements: First,
the preprocessing, outsourcing, and postprocessing overheads forU
or S must be minimized. Second, the overheads for cloud peers must
remain feasible. Third, outsourcing must remain secure against CU
and CS which we assume to be semi-honest and non-colluding
since cloud providers typically have strong incentives to guard
their reputation [2, 44, 60].

Outsourcing Building Blocks. Most of our building blocks,
i.e., R������, S�����P���,M��A�����, P���F���A�����, and
G�������, take only additive shares as inputs, learn nothing from
intermediate values (cf. Appendix B), and output additive shares
of the result. This renders outsourcing easy and e�cient: Without
any preprocessing,U and S just send their individual shares to CU
and CS which execute the protocol exactly as presented and return
the shares of the result back toU and S for postprocessing.

O�F���A����� and B�������� require cleartext knowledge
of some inputs which prevents outsourcing for U . We could still
e�ciently outsource both primitives using generic GCs but this
incurs signi�cantly higher overheads on the clouds. Alternatively,
we can move the very e�cient original O�F���A����� primitive
to the preprocessing phase, e.g., as we already did for V������ with
the goal of batching the calls to O�F���A����� into a single round.

In summary, all but the O�F���A����� and B�������� prim-
itives can be outsourced by providing the inputs as shares to the

jonathans
Typewriter
364



SHIELD: E�icient and Secure Machine Learning Classification ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

computation parties, who then compute shares of the result ac-
cording to the original protocols. We emphasize two important
points: First, sharing and recombining are very cheap operations
that require no preprocessing – computing these primitives is fea-
sible even on very constrained devices. Second, there is no need to
involve U or S in between successive executions of outsourceable
primitives – the cloud peers just keep hold of the shared outputs and
input them to the subsequent primitive, and so on. This argument
is the basis for outsourcing SHIELD’s classi�ers.

OutsourcingClassi�ers.OutsourcingH��������� andA�� is
straightforward, since all underlying primitives can be outsourced.
E.g., for outsourcing H���������, U creates shares hxi iCU and
hxi iCS of �2�(xi ) and sends them to CU and CS while S does the
same with the weights w j,i . CU and CS compute H��������� as
described in Prot. 1 and return hc⇤iCU and hc⇤iCS toU and S .

Outsourcing N����B���� requires to precompute all required
shares hp̂(xi |c j )i in the preprocessing as the employed O�F���A��
���� protocol cannot be e�ciently outsourced.U and S then add
the derived shares locally and directly provide shares of the poste-
riors hp̂(c j |Æx)i to the computation peers who then only compute
A����� and provide back the shared result hc⇤i. While this out-
sourcing schemes is clearly less e�cient in unburdening U and
S than the previous two, O�F���A����� causes only very low
overheads which are feasible even on mobile devices. In contrast,
N����B���� with an underlying Gaussian distribution (Prot. 9) can
be fully outsourced: U shares xi and S shares µi ,�i and 1/(�2�i )
to CU and CS which compute N����B���� and G������� on these
shares and provide back shares of the result.

Outsourcing V������ also requires to precompute all invoca-
tions of O�F���A����� to compute shares of the emission scores
hb̂i (ot )i. In the outsourcing phase, U then distributes hb̂i (ot )iU to
CU , while S provides hbi (ot )iS toCS . S further provides shares h�̂i i
of the prior state distribution and shares hâji i of the transition
scores to CU and CS . Given these shares, CU and CS can then com-
pute V������ as speci�ed in Prot. 4 (only leaving out the invocation
of O�F���A�����). The backtracking phase cannot be outsourced
(as it requires U to know each s

⇤
t in clear) and must be executed

betweenU and S in the postprocessing phase.

9.1 Evaluation of Outsourcing
We evaluate the overheads for user U on an LG Nexus 5 smart
phone (Android 4, 2.26GHz CPU, 16GB RAM) and service S on a
desktop machine (Ubuntu 14.04 LTS, Intel i7-4770S with 4 cores at
3.10GHz, 16GB RAM). The smart phone is connected through a
300Mbit/sWiFi network and the server is on a 1Gbit/s LAN. We
further assume the largest problem instance considered in our pre-
vious evaluation. We summarize the runtime and communication
overheads for U in Tab. 6 (results for S in Tab. 8 in Appendix C).

For H���������, A��, and N����B���� outsourcing is highly
e�cient and clearly feasible on constrained mobile devices. For
V������, runtimes for preprocessing and outsourcing of are clearly
feasible on mobile devices while the communication overheads of
the preprocessing phase might overtax slower networks or strain
the user’s data plan. However, we considered the largest HMM and
observation sequence from our evaluation – overheads for smaller
models range only in the order of kB to a few MB. For all classi�ers,

Preprocessing Outsourcing

Processing Communication Processing Communication

H��������� - - 0.27ms 4.49 kB
A�� - - 0.40ms 6.68 kB
N����B���� 2.60ms 0.13MB 1.24 �s 0.10 kB
F������ 1.02 s 113.99MB 49.17ms 3.80MB
V������ 1.02 s 113.99MB 49.17ms 3.80MB

Table 6: Runtime and communication forU for outsourcing
the largest considered problem instances.

we observe that the outsourcing overheads for the user are always
one or two orders of magnitude smaller than for the service provider
(cf. Appendix C). This is desired since we expect that users need
to outsource more frequently than service providers who usually
host their backends in the cloud already.

To put these numbers into relation, we shortly revisit the com-
parison against the best performing secure ANN from related work,
i.e., Gazelle [43]: In the standard setting, Gazelle outperforms A��
by 20⇥ but cannot be outsourced (cf. Sec. 6.1). In an outsourcing
setting, however, A�� requires 75⇥ less computation and 5000⇥
less communication on the client. Here, we thus trade a higher load
on the unconstrained cloud peers against a much lower load on
the constrained client, which clearly demonstrates the bene�ts of
designing secure classi�cation protocols for outsourcing.

10 CONCLUSION
We introduced SHIELD, an e�cient framework for secure classi�ca-
tion upon which we built four di�erent classes of classi�ers. Even
though being primarily designed for generality and wide applica-
bility, our thorough evaluation shows that SHIELD has competitive
performance even compared to approaches specialized to a single
classi�er such as ANNs. We noted that despite the signi�cant im-
provements made by SHIELD and related work, processing and,
especially, communication overheads of secure classi�cation may
still overtax constrained devices and networks. As a solution, we
designed SHIELD from the ground up to enable secure and e�cient
outsourcing to untrusted clouds. The evaluation shows that our
proposed outsourcing protocols for SHIELD’s choice of classi�ers
are feasible even for very constrained devices. Exciting future work
includes applying our results to di�erent classi�ers and use cases
as well as to the problem of secure training of the machine learning
models that we assumed given in this work.
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A DETAILED PROTOCOLS FOR SECURE
BUILDING BLOCKS

In this section, we provide the detailed protocols for our building
blocks as presented in Sec. 4.2 and summarized in Tab. 7.

A.1 Max and Argmax
Prot. 5 (presented in Sec. 4.2.2) provides the details of theM��A�����
protocol which is used in all our classi�ers, i.e., H���������, A��,
A��, and V������. GCC (hxi, �̃, z) denotes the secure evaluation of
a Boolean circuit C on secret-shared input x (U and S each input
their individual share), garbled input � (an input already held in
garbled form by the evaluator of the circuit), and clear text input z
(held by U or S in clear) using Yao’s generic GC protocol. We only
note the three steps, i) converting to GC using the garbled addition
circuit CAdd , ii) computing the garbled argmax circuit CAr�max
and iii) converting to additive shares using garbled subtraction cir-
cuitCSub , separately for the sake of clarity – they are implemented
as one monolithic circuit for greater e�ciency.

Protocol 5 Secure A����� protocol based on GC and ASS.
Input: Additive sharing of vector h Æx i = (hx1 i, ..., hxn i)
Output: Additive sharing hx ⇤ i, hi⇤ i of

x ⇤ = max
i=1. . .n

xi and i⇤ = argmax
i=1. . .n

xi

U , S : x̃1, ..., x̃n  GCCAdd
�
hx1 i, .., hxn i

�
U , S : x̃, ĩ⇤  GCCAr�max

�
x̃1, ..., x̃n

�
U , S : hx ⇤ i, hi⇤ i  GCCSub

�
x̃ ⇤, ĩ⇤

�

A.2 Scalar Products
Prot. 6 (presented in Sec. 4.2.3) provides the details of the S�����P���
protocol for securely computing scalar products which is heavily
used in H��������� and A�� to compute weighted sums. � de-
notes multiplication on additive shares which is implemented using
precomputed Multiplication Tripless (MTs) [12, 28]. The secure
R������ protocol on additive shares has been adopted from [86].

Protocol 6 Secure S�����P��� protocol based on ASS.
Input: Additive shares h Æx i and h Æw i of two equal sized vectors Æx and Æw
Output: Additive shares hz i of the inner product z = Æx · Æw

U , S : hzi i = hxi i � hwi i 8i = 1...n
U, S : hz i = Õn

i=1 hzi i
U , S : hz i  R������

�
hz i

�

A.3 Polynomial Approximation of Arbitrary
Functions

Prot. 7 (presented in Sec. 4.2.4) provides the details of the P����
F���A����� protocol. As for M��A�����, we only note conver-
sion steps between GC and ASS separately for the sake of clarity
while CAdd , CSelect ion , and CSub are implemented as one mono-
lithic circuit in practice. The selected approximation polynomial
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Protocol Description

x 0  �2�(x, l, s) Conversion from reals to integers with s bit precision and maximum bitlength l (inverse: �2�)
p̂0  �2��(p, l, s) Conversion from probabilities to integers in logspace with s bit precision s and bitlength l (inverse: ��2�)

hx ⇤ i, hi⇤ i  A�����(h Æx i) Max and argmax on secret-shared input vector with secret output
hz i  S�����P���(h Æx i, h Æw i) Scalar product on two equal-sized secret-shared vectors Æx, Æw with secret outputs

hf 0(xi )i  P���F���A�����(hPf i, hx i) Polynomial approximation of possibly secret function f at secret point with secret output
hf (xi )i  O�F���A�����(hf (X )i, x ) OT-based approximation of possibly secret function f at point x known by U with secret output

hNµ,� (x )i  G�������(hx i, hµ i, h� i) Secure evaluation of Gaussian N with secret parameters µ, � at secret point x with secret output.
S⇤  B��������(hM i, s⇤T ) Backtracking through secret state matrix M from state s⇤T known by U or S with output to U or S

Table 7: Summary of the secure building blocks of SHIELD. The protocols are provided in full detail in Appendix A.

�i (x) is evaluated using the E���P��� subprotocol. E���P��� re-
quires dlog2(d)e + 1 rounds of parallel multiplications and rescal-
ing: In round j, the terms hx2i i, ..., hx2i�1+1i and ha2i�1x2

i�1 i, ...,
ha2i�2+1x2

i�2+1i. Finally, all shares are added up locally.

Protocol 7 Secure P���F���A����� protocol for the evaluation
of arbitrary functions based on GC and ASS.
Input: Shared evaluation point hx i and approximation parameters

hP i = (ha10 i, ..., hakd i, hr1 i, ..., hrk i)
Output: Approximated result h�i (x )i with ri  x < ri

Parameter selection:
U , S : x̃  GCCAdd

�
hx i

�
U , S : P̃  GCCAdd

�
hP i

�
U , S : ãid , ..., ãi0  GCCSelect ion

�
x̃, P̃

�
U , S : h�i i = (haid i, ..., hai0 i) GCCSub

�
ãid , ..., ãi0

�
U , S : h�i (x )i  E���P���(h�i i, hx i)
Subprotocol E���P���: 8i = 1, ..., dlo�2(d )e + 1
U , S : j = 1 : hx 2 i  hx i � hx i, ha1x i  ha1 i � hx i

j = 2 : hx 4 i  hx 2 i � hx 2 i, hx 3 i  hx 2 i � hx i,
ha2x 2 i  ha2 i � hx 2 i

j : hx 2j i, ..., hx 2j�1+1 i, hai2j�1x 2j�1 i, ..., hai2j�2+1x 2j�2+1 i
j = dlog2(d )e + 1 : haidxd i, haid�1xd�1 i, ...

U, S : h�i (x )i =
d’
j=0
hai jx j i

A.4 OT-based Evaluation of Discrete Functions
Prot. 8 (presented in Sec. 4.2.4) provides the details of the O�F���
�A����� protocol. We adopted this protocol from [86] and im-
proved it such that the values f (x1), ..., f (xm ) can also be secret-
shared as opposed to the protocol from [86] where they need to be
known in clear by the service S .

A.5 Evaluating Gaussians
Prot. 9 (presented in Sec. 4.2.4) provides the details of the G�������
protocol for securely evaluating secret Gaussians Nµ,� at secret
evaluation points x . Since we can parallelize multiplications and
rescaling, the protocol requires only two rounds of communication.

Protocol 8 Secure O�F���A����� protocol for evaluating a prob-
ability mass function based on ASS and OT adapted from [86].
Input: Additive sharing hf (X )i = hf (x1)i, ..., hf (xm i), only U has xi
Output: Additive sharing hf (xi )i

S : hf 0(X )i = hf (x1) + rS i, ..., hf p(xm ) + rS i with rS 2R Z2l
U , S : hf (xi )iU  1-m-OT1l (xi , hf

0(X )i)
S : hf (xi )iS = �rS

Protocol 9 Secure G������� protocol for evaluating a Gaussian
distribution based on ASS.
Input: Additive shares hx i, hµ i, hlog(� )i, h1/�2� 2 i
Output: Additive shares hp̂(x )0 i = hlog(Nµ,� (x ))i

U , S : hp̂(x )0 i = hx i � h�µi i
U , S : hp̂(x )0 i = R������

�
hp̂(x )0 i � hp̂(x )0 i

�
U , S : hp̂(x )0 i = R������

�
hp̂(x )0 i � h1/�2� 2 i

�
U, S : hp̂(x )0 i = h��̂ )i � hp̂(x )0 i

A.6 Backtracking
Prot. 10 (presented in Sec. 4.2.5) provides the details of the B����
����� protocol for secure backtracking through a secret-shared
dynamic-programming matrix. It is used in V������ to compute the
optimal state sequence for a given observation sequence. Adapting
the protocol such that S instead of U learns the state sequence is
straightforward by switching the roles of the two parties.

Protocol 10 Secure B�������� protocol for backtracking through
a DP matrix based on OT and ASS.
Input: Additive shares of DP matrix hM i and �nal state hs⇤T i
Output: U obtains optimal state sequence S⇤ = s⇤1, ..., s

⇤
T

U , S : s⇤T  R��������(hs⇤t i)
Backtracking: For T � t � 2

U , S : hs⇤t�1 i  1-N -OTl
�
s⇤t , (hM1t iS , ..., hMNt iS

�
U : s⇤t�1  R��������

�
hs⇤t�1 i

�

B SECURITY DISCUSSION
We show that our classi�ers are secure in the semi-honest adver-
sary model. For the security proofs of the basic STC techniques
underlying our approaches we refer to [8, 56] for OT, [13, 28] for
ASS, and [14, 80] for GC.
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We begin by showing that neither party learns anything in our
proposed building blocks protocols, i.e., neither from the inputs, nor
the outputs, nor any intermediate values. We then invoke Canetti’s
modular sequential composition theorem [21] to argue that our
classi�er designs built on top of these primitives are secure.

B.1 Security of the Building Blocks
We discuss security individually for each of the building blocks
proposed in Sec. 4.2 and presented in detail in Appendix A.

B.1.1 Security of M��A�����. All steps of M��A����� are real-
ized in one monolithic GC – we emphasize that we di�erentiate the
three steps in our protocol description only for reasons of clarity
but implement them in one single GC which yields better perfor-
mance. Consisting of only one GC, security for these steps follows
directly from the security of GCs. The inputs and outputs are all
additively shared over both parties. Since individual shares are
perfectly random, they reveal no information to either party.

B.1.2 Security of S�����P���. Security of S�����P��� (Prot. 6,
Sec. 4.2.3) follows from the security of addition and multiplication
over additive shares [28].

B.1.3 Security of P���F���A�����. For P���F���A����� (Prot. 7)
we show that neither party learns anything about the inputs hxi and
hPi and the output h�i (x)i. We �rst note that all inputs are given
as additive shares and a single share is perfectly random and does
not reveal any information to its holder. The �rst protocol steps,
involving i) input conversion, ii) the selection of approximation
parameters, and iii) the conversion of outputs, are realized in one
monolithic GC. As forM��A����� before, we only di�erentiate
these three steps in our protocol description for reasons of clarity
but implement them in one single GC which yields better perfor-
mance. Consisting of only one GC, security for these steps follows
directly from the security of GCs. The output of these steps h�i i is
additively shared over both parties which reveals no information
to either party holding only a single share of each output since
additive sharing implements perfect blinding over Z2l . It is also
important to note that the structure of the circuit is independent
of all parameters except for the public parameter k (the number
of approximation intervals in this context), therefore leaking no
sensitive information. In the penultimate step, we securely evalu-
ate the shared polynomial h�i i on the shared evaluation point hxi.
Since this step involves only multiplication and rescaling, security
follows from the security of ASS and the security of R������ as
discussed in [86]. All outputs are again additively shared and reveal
no information to either party. The last step involves an addition
operation over additive shares which is executed locally and has no
security implications in the semi-honest model. Finally, the output
h�i (x)i is obtained by the two parties in shared form, where a single
share is indistinguishable from a random value and reveals no infor-
mation. In summary, security of P���F���A����� depends on the
security of Yao’s GCs and the R������ protocol. As R������ o�ers
only statistical security against a semi-honest S , P���F���A�����
as well o�ers only statistical security.

B.1.4 Security of O�F���A�����. Security of the O�F���A�����
protocol (Prot. 8, Sec. 4.2.4) follows directly from the security of OT
and ASS.

B.1.5 Security of G�������. G������� (Prot. 9) only composes
secure additions, multiplications, and the R������ protocol from
[86]. We thus conclude that it is secure in the semi-honest model.
It is perfectly secure againstU and o�ers statistical security against
S due to R������. By switching the roles ofU and S in R������, we
can �ip these guarantees if desired.

B.1.6 Security of B��������. B�������� (Prot. 10) inherits all
security guarantees directly from the utilized OT protocol which
ensures thatU is only able to learn the optimal state sequence S⇤
and nothing else about the DP matrix M while S learns nothing at
all. Note that we can easily switch the roles if S should learn S

⇤

instead ofU .

B.2 Security of the Classi�er Designs
The security argument is the same for all our classi�er designs,
i.e., H���������, A��, N����B����, and V������. We argue thatU
learns nothing about the involved classi�cation modelM (private
input of S), and, vice versa, S learns nothing about the feature
vector Æx (U 0s private input), except of course for what is implied
in the �nal result that is learned in clear by one or both parties.
This proposition holds since any interaction betweenU and S in all
our secure classi�ers happens only through one or multiple of the
building blocks discussed above. As we have showed in the previous
section, all of these primitives are secure in the semi-honest model
and return their output in the form of random additive shares
such that their output does not reveal anything to either party. In
other words, their use reveals no information about the inputs or
any intermediate values. This allows us to compose them and the
composition is then secure according to the modular sequential
composition theorem for semi-honest protocols [21]. All other steps
in the secure classi�cation protocols are local operations that have
no security implications in the semi-honest model. Finally, one
or both parties learn the output by recombining the shared result
which is of course as intended.

It is important to note that the utilized STC techniques protect
the inputs (i.e., the models and feature vectors) but not the structure
of the evaluated classi�cation function. In particular, this implies
that S learns the length of the feature vector Æx while U learns the
dimension of the models, e.g., the total number of possible classes,
the number of layers and neurons in an ANN, or the number of
states and possible emissions in an HMM. We emphasize that this
is fully within the security model de�ned in Sec. 2.1. If desired this
can be prevented in all our designs by padding inputs with dummy
features or observations and models with dummy weights, neurons,
states, and so forth but this inevitably increases processing and
communication overheads. Another approach are universal circuits
that also hide the function that is being evaluated [46, 48] also
referred to as Private Function Evaluation (PFE). PFE causes orders
of magnitude higher overheads than the secure evaluation of public
functions. We argue that the costs of PFE are not justi�ed in our
application context since our classi�cation algorithms are publicly
known and do not require protection.
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Preprocessing Outsourcing

Processing Communication Processing Communication

H��������� - - 0.27ms 4.49 kB
A�� - - 0.40ms 6.68 kB
N����B���� 2.57ms 0.13MB 1.24 �s 0.10 kB
V������ 1.02 s 113.99MB 786.47ms 18.99MB

Table 8: Runtime and communication for S for outsourcing
the largest considered problem instances.

C EVALUATION OF OUTSOURCING FOR THE
SERVICE PROVIDER

Tab. 8 summarizes the costs S for outsourcing our di�erent classi-
�ers to an untrusted computation cloud. The results complement
our evaluation of the user’s side as discussed in Sec. 9.1.

For H���������, A��, and N����B���� outsourcing is clearly
highly e�cient and feasible even if S is not running a powerful
server-grade machine. For V������, runtimes for preprocessing
and outsourcing of are clearly feasible while the communication
overhead, especially in the preprocessing phase, might prove chal-
lenging when S is connected via networks with constrained band-
width. However, we considered the largest HMM and observation
sequence from our evaluation – overheads for smaller models range
only in the order of kB to a few MB.

370


	i01-1-mishra
	i01-2-kouwe
	Abstract
	1 Introduction
	2 Background
	2.1 Use-after-free
	2.2 Uninitialized reads
	2.3 Type safety

	3 Threat Model
	4 Overview
	5 Heap
	5.1 Typed memory allocations
	5.2 Wrapper detection and inlining

	6 Stack
	6.1 Guaranteed initialization on the safe stack
	6.2 Typed unsafe stacks

	7 Implementation
	8 Evaluation
	8.1 Security
	8.2 Type detection
	8.3 Wrapper detection and inlining
	8.4 Memory overhead
	8.5 Run-time overhead
	8.6 Firefox case study

	9 Limitations
	10 Related Work
	11 Conclusion
	References

	i01-3-farkhani
	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Control Flow Integrity (CFI)
	2.2 Runtime Type Checking
	2.3 Arity Checking
	2.4 Reuse Attack Protector (RAP)
	2.5 Type Collisions
	2.6 Research Questions

	3 Attack Overview
	3.1 Threat Model
	3.2 Attack Preliminaries
	3.3 Finding Gadgets
	3.4 Constraint Solving

	4 Proof-of-Concept Exploits
	4.1 Nginx Exploit
	4.2 Exim Exploit
	4.3 Summary

	5 Evaluation
	5.1 Type Collisions
	5.2 Gadget Distribution
	5.3 Libc
	5.4 Type Checking vs. Points-to Analysis

	6 Discussion
	6.1 Type Diversification
	6.2 Separate Compilation
	6.3 Mismatch types
	6.4 Support for Assembly Code

	7 Related work
	8 Conclusion
	References

	i01-4-ahmadvand
	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Software integrity protection
	2.2 Nondeterministic code detection

	3 Design
	3.1 Segregation of input data/control-flow dependent instructions
	3.2 Short Range Oblivious Hashing (SROH)
	3.3 Data-Dependent Instructions (DDIs)
	3.4 Intertwined protection

	4 Implementation
	4.1 Protection process
	4.2 Input dependency detection
	4.3 Oblivious hashing (OH)
	4.4 Short Range Oblivious Hashing (SROH)
	4.5 Self-checksumming (SC)
	4.6 Response mechanism

	5 Evaluation
	5.1 Dataset
	5.2 Preparation
	5.3 Coverage
	5.4 Performance analysis
	5.5 Security analysis

	6 Discussion
	6.1 Coverage
	6.2 Implicit protection with OH/SROH
	6.3 Performance

	7 Conclusions
	References
	A A full example of OH+SROH utilization

	i02-1-liu
	Abstract
	1 Introduction
	2 Assumptions and Goals
	3 Related Work
	3.1 Traditional 2FA
	3.2 2FA with Less User-Phone Interactions

	4 Typing-Proof
	4.1 Enrollment and Login
	4.2 Similarity Score
	4.3 Usability Analysis
	4.4 Cost Analysis

	5 Evaluation
	5.1 Data Collection
	5.2 Parameters Configuration
	5.3 False Rejection Rate
	5.4 False Acceptance Rate

	6 Security Analysis
	7 User Study
	7.1 Procedure
	7.2 Usability

	8 Discussion
	9 Conclusion
	References
	A Quantitative Usability Analysis Framework
	B Prototype Implementation
	C System Usability Scale
	D Post-test Questionnaire
	E Comparison Results

	i02-2-mccully
	Abstract
	1 Introduction
	2 Related Work
	2.1 Keystroke dynamics
	2.2 Collaborative editing
	2.3 Identification vs. Authentication

	3 Study: User Identification in Collaboration Services
	3.1 The UB Data Set
	3.2 Log replay data set (LRDS)
	3.3 Feature engineering
	3.4 Random forest classification
	3.5 Model improvements
	3.6 Results

	4 Indirect Typing Biometric Attack
	4.1 Authentication service
	4.2 Forgery attack scenario
	4.3 Creating a forgery
	4.4 TypingDNA Forgery Attack

	5 Discussion
	5.1 Generalizability
	5.2 Practical implications
	5.3 Broader implications

	6 Conclusions
	References

	i02-4-lu
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Online Password Guessing Attacks
	2.2 Defenses against Online Password Attacks
	2.3 Offline Password Attacks

	3 Methodology
	3.1 Modeling Lockout Threshold and Counting Mechanism
	3.2 Black-box Tests

	4 A Measurement Study of Rate Limiting Implementations
	4.1 Experiment Setup
	4.2 Data Collection

	5 Evaluation and Analysis
	5.1 Data Analysis
	5.2 Security Analysis
	5.3 Interesting Observations
	5.4 Recommendations

	6 Limitations and Discussion
	7 Conclusion
	Acknowledgments
	References

	i03-1-copty
	Abstract
	1 Introduction
	2 An extremely abstract OS
	2.1 Implementation details
	2.2 Multiple paths

	3 Malware classification
	3.1 Features
	3.2 Experimental setup
	3.3 Experimental Results

	4 Related work
	4.1 Extreme abstraction
	4.2 Lightweight symbols
	4.3 Malware classification

	5 Future work
	6 Conclusion
	Acknowledgments
	References

	i03-2-machiry
	Abstract
	1 Introduction
	2 Threat Model
	3 Approach Overview
	3.1 Why Loops?
	3.2 Loop Characterization
	3.3 Application Classification

	4 Resilience to Feature-unaware Perturbations
	4.1 Application Transformations
	4.2 CFG Obfuscation
	4.3 Reflection
	4.4 Loop Perturbations

	5 Classification Evaluation
	5.1 Datasets
	5.2 Iterative Pruning Performance
	5.3 Malware Classification Results
	5.4 Importance of Loops and Semantic Labels
	5.5 Resilience to Feature-unaware Perturbations

	6 Discussion
	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

	i03-3-oprea
	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Enterprise Perimeter Defenses
	2.2 Problem definition and adversarial model
	2.3 System Overview
	2.4 Comparison with previous work
	2.5 Ethical considerations

	3 MADE Training
	3.1 Data Filtering and Labeling
	3.2 Feature Extraction
	3.3 Feature Selection
	3.4 Model Selection

	4 Testing and Evaluation
	4.1 MADE Testing
	4.2 Evaluation, Analysis, and Feedback
	4.3 Discussion and Limitations

	5 Related Work
	6 Conclusion
	References

	i03-4-echeverria
	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Bot Datasets
	3.2 Aggregated Bot Dataset
	3.3 User Dataset
	3.4 Botometer Scores

	4 Methodology - The LOBO test
	5 Features for Classification
	5.1 User Features
	5.2 Tweet Features

	6 Experiments
	6.1 Subsampling
	6.2 General Classifiers
	6.3 LOBO Test I - C30K
	6.4 LOBO Test II - C500

	7 Beyond the LOBO test
	7.1 Relatively Stable Results
	7.2 Learning Rate
	7.3 TSNE plot

	8 Discussion
	8.1 Accuracy and Generalization
	8.2 Improvements with small data additions
	8.3 Scalability

	9 Conclusion
	References

	i04-1-tuveri
	Abstract
	1 Introduction
	2 Background
	2.1 SM2: Chinese Cryptography Standards
	2.2 Remote Timing Attacks
	2.3 Cache Timing Attacks
	2.4 EM Analysis
	2.5 SM2 Implementation Attacks: Previous Work

	3 SM2 in OpenSSL
	4 SM2DSA: Remote Timings
	5 SM2DSA: Cache Timings
	5.1 Scalar Multiplication
	5.2 Modular Inversion

	6 SM2PKE: EM Analysis
	7 SCA Mitigations
	7.1 Scalar Multiplication: SCA Mitigations
	7.2 Modular Inversion: SCA Mitigations
	7.3 SCA Mitigations: Evaluation

	8 Conclusion
	Acknowledgments
	References
	A Remote Timings SCA Evaluation: ECDSA

	i04-2-wichelmann
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Analysis Setup and Targeted Software

	2 Background
	2.1 Dynamic Binary Instrumentation
	2.2 Microarchitectural Leakage
	2.3 Mutual Information Analysis
	2.4 Signing Algorithms

	3 MicroWalk Analysis Technique
	3.1 Leakage Analysis Model
	3.2 Capturing Internal States
	3.3 Preparing State Variables
	3.4 Leakage Analysis
	3.5 Interpretation of MI Score

	4 MicroWalk Framework
	4.1 Investigated Binary
	4.2 Input Generation
	4.3 Trace Generation
	4.4 Trace Preprocessing
	4.5 Leakage Analysis
	4.6 Manual Inspection and Visualization

	5 Case Study I: Intel IPP
	5.1 Applying MicroWalk MI Analysis to IPP
	5.2 Discovered leakages in Intel IPP

	6 Case Study II: Microsoft CNG
	6.1 Applying MicroWalk MI Analysis to CNG
	6.2 Discovered leakages in Microsoft CNG

	7 Related Work
	8 Conclusion
	8.1 Future Work

	References

	i04-3-zhang
	Abstract
	1 Introduction
	2 Background
	2.1 Cache Side-channel Attacks
	2.2 Cache Side-channel Defenses
	2.3 Deep Neural Networks

	3 Methodology Overview
	4 Dataset Construction
	4.1 An Abstract Model
	4.2 Modeling Specific Attacks
	4.3 Modeling Defense Solutions

	5 DNN Training and Inference
	5.1 Dataset Processing
	5.2 Training
	5.3 Inference

	6 Evaluation
	6.1 Attack Strategies
	6.2 Defense Strategies

	7 Methodology Validation
	8 Related Work
	9 Conclusion
	References

	i04-4-liang
	Abstract
	1 Introduction
	2 Problem
	2.1 Side-Channel Attack over Memory Accesses
	2.2 Burdensome Obfuscation of Access Pattern
	2.3 Toward Practically Efficient Obfuscation

	3 Overview
	3.1 Motivation
	3.2 Challenge
	3.3 Methodology

	4 Design
	4.1 Architecture
	4.2 Position Map Compression
	4.3 Position Map Update

	5 Implementation
	6 Evaluation
	6.1 Memory Access Randomness
	6.2 Execution Time
	6.3 Memory Usage

	7 Discussion
	8 Conclusion
	References

	i05-1-junaid
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Example
	2.3 Challenges

	3 StateDroid Overview
	3.1 Architecture
	3.2 Advance Over State-of-the-Art Work

	4 API Call Detector
	4.1 Reengineering Lifecycle Models
	4.2 Deriving Event & Callback Sequences
	4.3 Detecting API Call Sequences

	5 Action Detector
	5.1 Object State Machines
	5.2 API & Action Formalization
	5.3 Generating API Call Sequences
	5.4 Constructing Object State Machines

	6 Attack Detector
	6.1 Action-Effect & Attack Formalization
	6.2 Frame Axioms

	7 Evaluation
	7.1 RQ1: Accuracy of Action Detector
	7.2 RQ2: Accuracy of Attack Detector
	7.3 RQ3: Comparison with Existing Tools
	7.4 RQ4: StateDroid's Performance

	8 Related Work
	9 Discussion
	10 Conclusion
	11 Acknowledgments
	References

	i05-2-allen
	Abstract
	1 Introduction
	2 Rethinking Contextual Awareness
	2.1 Less Effective Contextual Information
	2.2 Case Study: Identifying Informative Context Factors
	2.3 Calling for Lightweight Context Dependencies

	3 PikaDroid
	3.1 Overview
	3.2 Static Analysis Module
	3.3 Learning Module

	4 Implementation
	5 Dataset
	6 Evaluation
	6.1 Effectiveness
	6.2 Comparison with Prior Work
	6.3 Robustness
	6.4 Classification Models
	6.5 Performance

	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

	i05-3-wermke
	Abstract
	1 Introduction
	2 Android Obfuscation Techniques
	3 Detecting ProGuard Obfuscation
	4 Large Scale Obfuscation Analysis
	4.1 Obfuscation Trends

	5 Developer Survey
	5.1 Results and Takeaways

	6 Obfuscation Experiment
	6.1 Results and Takeaways

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References
	A Ethical Considerations
	B Online Survey
	B.1 ProGuard Study - Exit Survey


	i05-4-chau
	Abstract
	1 Introduction
	2 Scope
	2.1 Attack Surfaces
	2.2 Platform and Test Setup
	2.3 Threat Model
	2.4 App Selection

	3 App Weaknesses & Network Attacks
	3.1 Raw Content Transfer In Clear
	3.2 Bootstrap Information Transfer in Clear
	3.3 Raw Content Transfer over TLS
	3.4 Bootstrap Information Transfer over TLS
	3.5 Threats to User Security and Privacy

	4 App Weaknesses & Local Attacks
	4.1 Log File Leakage
	4.2 Raw Content on External Storage
	4.3 Raw Encryption Key on External Storage
	4.4 Raw Content on Internal Storage
	4.5 Raw Encryption Key on Internal Storage
	4.6 Direct Content Source on Internal Storage
	4.7 Client-Side Authorization
	4.8 Raw Encryption Key in Memory

	5 Discussions
	5.1 Responsible Disclosure and Aftermath
	5.2 Possible Countermeasures and Challenges

	6 Related Work
	7 Conclusion
	References
	A APPENDIX
	A.1 Legal and Ethical Matters
	A.2 Table of Apps and CWEs


	i06-1-mani
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology & Experimental Setup
	5 Proxy Availability & Performance
	5.1 Performance
	5.2 Expected vs. Unexpected Content
	5.3 Anonymity

	6 HTML Manipulation
	7 File Manipulation
	7.1 Detailed Findings
	7.2 Network Diversity and Consistency of Malicious Proxies

	8 SSL/TLS Analysis
	9 Comparison With Tor
	10 Ethical considerations
	11 Conclusion
	Acknowledgments
	References
	A Examples of HTTP Proxy Protocols
	B Client locations
	C File Manipulation Infections

	i06-2-ramanathan
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Volumetric Attacks
	2.2 Related Work
	2.3 SENSS vs First-ISP vs Clouds

	3 SENSS
	3.1 Challenges
	3.2 SENSS Architecture
	3.3 ISP Implementation
	3.4 Client Programs
	3.5 Security and Robustness

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 2016 attack on Dyn
	4.3 Effectiveness in Sparse Deployment
	4.4 Comparison of SENSS and Cloud Defenses
	4.5 Delay, Traffic and Message Cost
	4.6 Scalability within an ISP

	5 Conclusion
	6 Acknowledgement
	References

	i06-3-baek
	Abstract
	1 Introduction
	2 Wi-Fi Calling
	2.1 Wi-Fi Calling Architecture
	2.2 Wi-Fi Calling Handshakes

	3 Security in Wi-Fi Calling
	3.1 Privacy of Users
	3.2 Availability of Services
	3.3 Attacks Originating From Victim's UE and Attacker's AP

	4 IMSI Privacy Attack
	4.1 Attack Scenario
	4.2 Attack Setup 
	4.3 Results of Attacks
	4.4 Impact and Applicability

	5 DoS Attacks
	5.1 Attack Scenarios
	5.2 Attack Setup
	5.3 Results of Attacks
	5.4 Impact and Applicability

	6 Countermeasures
	6.1 IMSI Privacy Attack Countermeasures
	6.2 DoS Countermeasures

	7 Discussion
	7.1 Trade-off Between Security and Usability
	7.2 Trade-off Between Security and Deployment

	8 Related work
	9 Conclusion
	References

	i06-4-sy
	Abstract
	1 Introduction
	2 Background
	2.1 Session ID Resumption
	2.2 Session Ticket Resumption
	2.3 Session Resumption via Pre-Shared Keys
	2.4 Comparison of Session Resumption Mechanisms

	3 Privacy Problems with TLS Session Resumption
	3.1 Lifetime of Session Resumption Mechanisms
	3.2 Third-Party Tracking via Session Resumption

	4 Data Collection
	4.1 Alexa Top Million Data Set
	4.2 Browser Measurements
	4.3 DNS Data Set

	5 Evaluation
	5.1 Evaluation of Server Configurations
	5.2 Evaluation of Browser Configurations
	5.3 Evaluation of Real-World User Traffic

	6 Countermeasures
	7 Related Work
	8 Conclusion
	References

	i07-1-garmany
	Abstract
	1 Introduction
	2 Model and Assumptions
	2.1 Modern Vulnerability Exploitation

	3 Design
	3.1 Knowledge Base
	3.2 Propagating Control
	3.3 Finding Sinks
	3.4 Program Paths
	3.5 Triggering Input

	4 Implementation Details
	5 Evaluation
	5.1 Exploitation Primitive Trigger (EPT)
	5.2 Fine Tuning

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	Appendices
	A JavaScript Code Corresponding to Running Example
	B SSA-map

	i07-2-rodriguez
	Abstract
	1 Motivation
	2 Problem Statement
	3 Methodology
	3.1 Data Collection
	3.2 Labeling
	3.3 Feature Selection
	3.4 Learning

	4 Evaluation
	4.1 Detection
	4.2 Impact on the Page Loading Time

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Theoretical Upper Bound for False Positives and Negatives
	B Additional Plots and Tables

	i07-3-xu
	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	2.1 Multi-tab Threat Model
	2.2 Related work

	3 Overview of Multi-tab Attacks
	4 Dynamic Page Split
	4.1 Challenges in Identifying True Split Points
	4.2 BalanceCascade-XGBoost Algorithm

	5 Chunk-Based Page Classification
	5.1 Feature Selection
	5.2 Classifier Design

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Evaluation of Multi-tab] Attacks
	6.3 Evaluation of Page Split
	6.4 Evaluation of Chunk-Based Classification
	6.5 Evaluation with More Than Two Tabs

	7 Conclusion and Future Work
	References
	A The Rest Features in Feature Set
	B Feature Selection

	i07-4-acker
	Abstract
	1 Introduction
	2 Background
	3 Mechanism design
	3.1 Overview
	3.2 Configuration structure
	3.3 Client-side application
	3.4 Misconfiguration

	4 Policy comparison and combination
	4.1  for policy comparison
	4.2  and  for policy combination

	5 Prototype implementations
	5.1 Client-side enforcement
	5.2 Server-side manifest handling
	5.3 Automated manifest generation from observed traffic
	5.4 Limitations and considerations

	6 Evaluation
	6.1 Functional evaluation
	6.2 Longitudinal study
	6.3 Performance measurement

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Statistical data

	i08-1-ziegeldorf
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Scenario and Requirements
	2.2 Analysis of Related Work

	3 Cryptographic Building Blocks
	4 SHIELD Framework
	4.1 Overview of Supervised Classification
	4.2 Secure Building Blocks
	4.3 Implementation and Evaluation Setup

	5 Hyperplane Classifiers
	5.1 Evaluation

	6 Artificial Neural Networks
	6.1 Evaluation

	7 Naive Bayes
	7.1 Evaluation

	8 Hidden Markov Models
	8.1 Evaluation

	9 Outsourcing
	9.1 Evaluation of Outsourcing

	10 Conclusion
	References
	A Detailed Protocols for Secure Building Blocks
	A.1 Max and Argmax
	A.2 Scalar Products
	A.3 Polynomial Approximation of Arbitrary Functions
	A.4 OT-based Evaluation of Discrete Functions
	A.5 Evaluating Gaussians
	A.6 Backtracking

	B Security Discussion
	B.1 Security of the Building Blocks
	B.2 Security of the Classifier Designs

	C Evaluation of Outsourcing for the service provider

	i08-2-kesarwani
	Abstract
	1 Introduction
	2 related work
	3 Problem Framework
	4 Model Extraction Warning
	4.1 Strategy 1: Providing model extraction warnings using information gain metric
	4.2 Strategy 2: Providing model extraction warnings using coverage metric 

	5 Experiments
	5.1 Model extraction status for source DT Models
	5.2 Model extraction status for source NN Models

	6 Conclusion and Future Work
	References

	i08-3-fang
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Collaborative Filtering
	2.2 Attacks to Recommender Systems

	3 Problem Formulation
	3.1 Threat Model
	3.2 Attacks as an Optimization Problem

	4 Our Poisoning Attacks
	4.1 Overview
	4.2 Approximating the Optimization Problem
	4.3 Solving the Optimization Problem
	4.4 Generating Rating Scores

	5 Experiments
	5.1 Experimental Setup
	5.2 Attacking Graph-based Systems
	5.3 Transferring to Other Systems

	6 Detecting Fake Users
	7 Conclusion and Future Work
	References

	i08-4-wei
	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Overview
	5 Power Extraction
	5.1 Interference Sources
	5.2 Extraction Methods

	6 Background Detection
	6.1 Intuition
	6.2 Attack Method
	6.3 Evaluation

	7 Image Reconstruction via Power Template
	7.1 Intuition
	7.2 Attack Method
	7.3 Evaluation

	8 Related Work
	9 Conclusion
	A Preliminaries
	A.1 Convolutional Neural Network
	A.2 CNN Accelerator Design
	A.3 Basics on Power Side Channel

	B Discussion and Future Work
	C Attack results on the MNIST dataset
	References

	i09-1-proskurin
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Exception Levels
	2.2 Guest Physical Memory Architecture
	2.3 Debug Exceptions
	2.4 Translation Lookaside Buffer
	2.5 Threat Model

	3 Guest Kernel Monitoring Primitives
	3.1 Implementing Kernel Tap Points
	3.2 Novel Single-Stepping Mechanism
	3.3 Xen altp2m on ARM
	3.4 Splitting the TLBs

	4 Evaluation
	4.1 System Setup
	4.2 DRAKVUF on ARM
	4.3 Performance
	4.4 Effectiveness

	5 Discussion
	5.1 Alternative Tracing Methods
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References

	i09-2-lin
	Abstract
	1 Introduction
	2 Background
	2.1 Linux Container
	2.2 Linux Kernel Security Mechanisms
	2.3 CPU Protection Mechanisms

	3 Attack Dataset Description
	3.1 Exploit Collection
	3.2 Attack Taxonomy
	3.3 Exploit Dataset

	4 Security Evaluation of Container
	4.1 Experiment Setup
	4.2 Result Overview
	4.3 Analysis of Privilege Escalation Attacks
	4.4 A Brief Summary

	5 Defeating Kernel Privilege Escalation Attacks
	5.1 Kernel Privilege Escalation Attack Model
	5.2 Countermeasures
	5.3 Effectiveness and Performance

	6 Discussion on Limitation
	7 Related work
	7.1 Container Security
	7.2 Attack Taxonomy

	8 Conclusion
	Acknowledgments
	References

	i09-3-futagami
	Abstract
	1 Introduction
	2 Out-of-band Remote Management
	3 VSBypass
	3.1 Assumptions and Threat Model
	3.2 Architecture

	4 Implementation
	4.1 Proxy VM
	4.2 I/O Interception
	4.3 Redirection of Virtual Interrupts
	4.4 Sharing VRAM
	4.5 VM Migration

	5 Experiments
	5.1 Eavesdropping on I/O data
	5.2 Performance of a Virtual Serial Console
	5.3 Performance of GUI Remote Access

	6 Related Work
	7 Conclusion
	References

	i09-4-cho
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Architecture and TrustZone
	2.2 Legitimate Channels between the Normal and Secure Worlds
	2.3 ARM Cache Architecture
	2.4 Previous Cache Attacks

	3 Assumptions and Attack Model
	4 Cross-world Covert Channels
	4.1 Prime+Count Overview
	4.2 Prime the Cache
	4.3 Count Using Cache Refill Events
	4.4 A Simple Message Encoding Method
	4.5 Cross-Core Covert Channels

	5 Implementation
	6 Evaluation
	6.1 Effectiveness of Prime+Count
	6.2 Choosing Bucket Ranges
	6.3 Capacity Measurement
	6.4 Image Transfer

	7 Discussion
	7.1 Limitations of Prime+Count
	7.2 Cross-world Covert Channels without Normal World Kernel Privileges
	7.3 Limitations of Our Experiments

	8 Related Work
	9 Conclusion
	References

	i10-1-aviv
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Study Design and Materials
	3.2 Live Simulation Setup and Coordination
	3.3 Procedure
	3.4 Recruitment

	4 Realism and Limitations
	5 Results
	5.1 Comparing Attack Rates Across Video and Live Studies
	5.2 Post-Hoc Participant Feedback

	6 Implications
	7 Conclusions
	References
	A Survey Material
	A.1 Ante Hoc Demographic Questionnaire
	A.2 Post Hoc Participant Strategies Questionnaire Questions
	A.3 Observation Forms
	A.4 Guide/Script for Administering Study

	B Visualization of Authentication
	B.1 Patterns
	B.2 PINs


	i10-2-neupane
	i10-3-wiese
	Abstract
	1 Introduction
	2 Ethical considerations
	3 Threats and Opportunities
	4 Form Factor Survey
	4.1 Materials and Methods
	4.2 Results
	4.3 Discussion
	4.4 Limitations

	5 Field Study
	5.1 Methods
	5.2 Materials

	6 Field Study Results & Discussion
	6.1 Participants and Confidants
	6.2 Recovery Rate
	6.3 Task Durations
	6.4 Security and Trust
	6.5 Sentiments and Token Handling

	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Form Factor Study Materials
	B Results of form factor survey
	C Questionnaire 1
	D Questionnaire 2
	E Questionnaire for Confidants

	i10-4-farhang
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Upgrades
	2.2 Software Updates
	2.3 Purchasing New Devices

	3 Methodology
	3.1 Online Survey
	3.2 Measures
	3.3 Study Procedures
	3.4 Participants

	4 Results
	4.1 To Upgrade, or Not to Upgrade?
	4.2 Perceived Usefulness and Satisfaction
	4.3 Measuring Upgrade Cost
	4.4 Security Concerns
	4.5 Free Upgrade and Notification Approach
	4.6 Purchasing New Device

	5 End of Life (EOL) and Security after EOL
	5.1 Security after EOL

	6 Discussion
	6.1 Better Communication to Address Privacy Concerns
	6.2 Better Upgrade Messaging
	6.3 Security and the Need for a Roadmap after EOL
	6.4 Reduce Perceived Cost

	7 Limitations
	8 Conclusion
	References
	A Survey Instrument
	B Code-book
	B.1 Code-book: Not Upgrade
	B.2 Code-book: Upgrade


	i11-1-jain
	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets 
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run


	i11-2-pang
	Abstract
	1 Introduction
	2 Background
	2.1 C++ Inheritance and Cast Operations
	2.2 Type Confusion
	2.3 Defenses against Type Confusion

	3 Threat Model
	4 Bitype Design and Implementation
	4.1 Overview
	4.2 Safe Encoding Scheme
	4.3 Object Tracing
	4.4 Typecasting Verification
	4.5 Optimization
	4.6 Implementation

	5 Evaluation
	5.1 Coverage
	5.2 Performance Overhead
	5.3 Memory Overhead
	5.4 Compilation Time Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	i11-3-liu
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Analysis to Detect Concurrency Problems
	2.2 Concurrency Error Detection
	2.3 Logic-Based Methods
	2.4 Fuzz Testing

	3 Case Study of Concurrency Vulnerabilities
	3.1 Real-World Concurrency Vulnerabilities
	3.2 Characteristics of Concurrency Vulnerabilities

	4 Static Analysis
	4.1 Shared Memory Discovery
	4.2 Sensitive Operation Marking
	4.3 Data-flow Merging
	4.4 Vulnerability Categorization
	4.5 Semantic Checking

	5 Thread-Aware Fuzzing
	5.1 Interleaving Exploring Priority
	5.2 Targeted Priority
	5.3 Load Balance

	6 Implementation
	6.1 Implementation of Static Analysis
	6.2 Implementation of Thread-Aware Fuzzing

	7 Evaluation
	7.1 Benchmark Suite
	7.2 Experimental Results
	7.3 Validation of Detected Concurrency Vulnerabilities
	7.4 Analysis of Static Analysis Results
	7.5 Abnormal Time Cost of Static Analysis

	8 Limitations and Future Work
	8.1 Scalability of Static Analysis
	8.2 Capacity of AFL in Exploring Paths
	8.3 Restrictions of Manual Validation
	8.4 Additional Limitations

	9 Conclusion
	References

	i11-4-ye
	Abstract
	1 Introduction
	2 System Architecture
	3 Proposed Method
	3.1 Feature Extraction
	3.2 HIN Constructor
	3.3 snippet2vec: HIN Representation Learning
	3.4 Multi-view Fusion Classifier

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 snippet2vec based on Different Sets of Meta-path Schemes
	4.3 Comparisons with Different Network Representation Learning Models
	4.4 Comparisons with Traditional Machine Learning Methods
	4.5 Evaluation of Parameter Sensitivity, Scalability, and Stability
	4.6 Case Studies

	5 Related Work
	6 Conclusion
	References

	i12-1-etigowni
	Abstract
	1 Introduction
	2 Background
	2.1 Drone Flight Dynamics
	2.2 Offline Controller Code Verification
	2.3 Limitation of Existing Solutions

	3 Overview
	3.1 Threat Model
	3.2 Crystal Architecture
	3.3 Safety Requirement Definition
	3.4 Predictive Flight Modeling
	3.5 Just-Ahead-of-Time Verification

	4 Drone Physics Modeling
	4.1 Normal Operation Mode Physical Modeling
	4.2 Failure Mode Data-Driven Modeling
	4.3 Full Flight Operation mode

	5 Cyber-Physical Security Modeling
	6 JAT Verification and Recovery
	7 Evaluations
	7.1 Evaluation on 3DR Solo Quadcopter

	8 Related Work
	9 Conclusion
	A Global safety conditions
	B normal Operation Mode Physical Modeling
	Acknowledgments
	References

	i12-2-mujeeb
	i12-3-castellanos
	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Attack points and cyber-to-physical interfaces
	3.2 Attacker profile
	3.3 Modelling a CPS as a Data Flow Graph
	3.4 White-box analysis of controller's source code
	3.5 Extracting graphs from a controller's code
	3.6 Reachability analysis
	3.7 Shortest path analysis and attack diagrams

	4 Implementation
	4.1 The testbed
	4.2 PLC code parser

	5 Evaluation
	5.1 Interactions between attack points and Cy2Phy interfaces 
	5.2 Choosing suitable attack points
	5.3 Testing attack points in a real scenario

	6 Discussion
	7 Related work
	8 Conclusions and future work
	References
	A List of components in SWaT
	B Shortest path distance between attack points and Cy2Phy interfaces

	i12-4-schilling
	Abstract
	1 Introduction
	2 State of the Art and Background
	2.1 Threat Model and Attack Vector
	2.2 Error Detection Codes
	2.3 ARM Pointer Authentication

	3 Pointer Protection with Residue Codes
	3.1 Overview
	3.2 Pointer Layout and Residue-Code Selection
	3.3 Pointer Operations

	4 Evolved Memory Access Protection
	4.1 Overview
	4.2 The Linking Approach
	4.3 Memory-Mapped I/O

	5 Architecture
	5.1 New Instructions
	5.2 Hardware
	5.3 Software

	6 Evaluation
	6.1 Future Work

	7 Conclusion
	8 Acknowledgment
	References

	i13-1-wang
	Abstract
	1 Introduction
	2 Motivating Example
	3 System Overview
	4 Design and Implementation
	4.1 Library Call Tracing
	4.2 Lprov Kernel Module
	4.3 Lprov Daemon Process and Log Analysis

	5 Evaluation
	5.1 Performance Overhead
	5.2 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Kernel Event Tracing
	A.2 Log Analysis Algorithm
	A.3 Additional Performance Evaluation


	i13-2-deGoer
	Abstract
	1 Introduction
	2 Problem
	2.1 Statement
	2.2 Notations and definitions
	2.3 Scope

	3 Approach
	3.1 Overview
	3.2 Heuristics

	4 Implementation
	4.1 Ground-truth - oracle
	4.2 Naive implementations of call detection
	4.3 Implementation details of iCi

	5 Experiments
	5.1 Methodology
	5.2 Platform
	5.3 General results
	5.4 SPEC CPU2006
	5.5 Influence of the compiler
	5.6 Discussion

	6 Applications
	7 Conclusion
	References

	i13-3-im
	Abstract
	1 Introduction
	2 Background
	2.1 Android security architecture
	2.2 Example: Location services
	2.3 SEAndroid policy rules
	2.4 The complexity of SEAndroid policy

	3 Methodologies
	3.1 The ``box'' metric
	3.2 Git repository analysis
	3.3 Our measurement tool

	4 Measurement Results
	4.1 Boxes vs. rules
	4.2 Number of boxes in a rule
	4.3 Number of rules per box
	4.4 Ratio of rule vs. box changes
	4.5 Summary

	5 An Historical Analysis
	5.1 The ``age'' of rules
	5.2 The increasing policy complexity
	5.3 The effect of multiple branches
	5.4 Case study: Stagefright
	5.5 Contributor comparison

	6 Discussion
	6.1 SEAndroid vs. Smack
	6.2 Android Treble
	6.3 Android for Work

	7 Related work
	8 Conclusion
	9 Acknowledgment
	References

	i13-4-rahman
	Abstract
	1 Introduction
	2 Background
	3 Intent-driven Access Control
	3.1 Threat Model and Assumptions
	3.2 IAC via BCI

	4 Experiment Design
	4.1 Single App Experiment
	4.2 Multiple Apps Experiment
	4.3 Experimental Procedures

	5 Data Process and Analysis
	6 Feasibility Test
	6.1 Single App Analysis
	6.2 Cross-app Portability Analysis
	6.3 Results Analysis
	6.4 Authorization Accuracy

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References

	i14-1-nikolic
	Abstract
	1 Introduction
	2 Problem
	2.1 Ethereum Smart Contracts
	2.2 Contracts with Trace Vulnerabilities
	2.3 Our Approach

	3 Trace Vulnerabilities
	3.1 EVM Semantics and Traces
	3.2 Safety Violations
	3.3 Liveness Violations

	4 The Algorithm and the Tool
	4.1 Symbolic Analysis
	4.2 Concrete Validation

	5 Evaluation
	5.1 Results
	5.2 Case Studies: True Positives
	5.3 Case Studies: False Positives
	5.4 Summary and Observations

	6 Related Work
	7 Conclusion
	References

	i14-2-torres
	Abstract
	1 Introduction
	2 Background
	2.1 The Ethereum Virtual Machine
	2.2 The Solidity Programming Language
	2.3 Integer Bugs in Ethereum Smart Contracts

	3 Methodology
	3.1 Type Inference
	3.2 Finding Integer Bugs
	3.3 Taint Analysis
	3.4 Identifying Benign Integer Bugs

	4 Osiris
	4.1 Design Overview
	4.2 Implementation

	5 Evaluation
	5.1 Empirical Analysis
	5.2 Detection of Real-World Vulnerabilities

	6 Discussion
	6.1 Causes for Integer Bugs
	6.2 Ways Towards Safe Integer Handling

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Control Flow Graph Example
	B The DAO Hack

	i14-3-greubel
	Abstract
	1 Introduction
	2 Background
	2.1 Tor Bandwidth Measurements
	2.2 Trusted Execution Environments
	2.3 Blockchain and Smart Contracts

	3 System and Adversary Model
	4 Design
	4.1 Entity Communication
	4.2 Relay Registration
	4.3 Bandwidth Measurer Registration
	4.4 Join Measurement Process
	4.5 Bandwidth Measurements
	4.6 Reporting and Aggregating Results
	4.7 Malfunction Detection

	5 Security Analysis
	5.1 Group Compromise
	5.2 Attacks from a malicious Host
	5.3 Attacks from compromised TEEs
	5.4 Attacks on the SC

	6 Implementation
	6.1 Smart Contract
	6.2 Bandwidth Measurement Script
	6.3 Bandwidth Measurement Host

	7 Evaluation
	7.1 Measurement script
	7.2 Smart Contract

	8 Related Work
	9 Conclusion and Future Work
	References
	A Intel SGX Details
	B Tor Speedracer Measurements
	C Smart Contract Implementation
	D Measurement Data

	i14-4-tran
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Threat Model
	2.3 Scope, Assumptions, and Limitations

	3 Obscuro
	3.1 Solution Overview
	3.2 Obscuro Protocol
	3.3 Indirect Participation Mechanism
	3.4 Detection of Malicious Blockchain Forks
	3.5 Collecting Deposits

	4 Security Analysis
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Discussion
	6.1 Recipient of the Mixing Fees
	6.2 Multiple Obscuro Instances

	7 Related Work
	7.1 Existing Bitcoin Mixer Solutions
	7.2 Privacy Improvements in other Cryptocurrencies
	7.3 TEE for Cryptocurrency Applications

	8 Conclusion
	9 Acknowledgments
	References
	A Structure of the Deposit Transaction

	i15-1-continella
	Abstract
	1 Introduction
	2 Background
	2.1 Amazon S3
	2.2 Threats

	3 Methodology
	3.1 Enumeration & Data Collection
	3.2 Security Analysis

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Enumeration & Data Collection
	4.3 Scanning Results
	4.4 Vulnerable Websites

	5 Mitigation
	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

	i15-2-demoulin
	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Strawman solutions
	2.2 DeDoS solution

	3 DeDoS Design
	3.1 Minimum splittable units
	3.2 Inter-MSU communication
	3.3 Routing tables
	3.4 DeDoS runtime API
	3.5 Support for existing applications

	4 Resource Allocation
	4.1 Machine-local scheduling
	4.2 Initial MSU assignment
	4.3 Cloning and merging

	5 Implementation
	5.1 Overview
	5.2 DeDoS local runtime

	6 Case Studies
	7 Evaluation
	7.1 Overheads
	7.2 Attack mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

	i16-1-blanchard
	Abstract
	1 Introduction
	2 Method
	2.1 Word choice
	2.2 Protocol
	2.3 Design choices

	3 Demographic information
	3.1 Participant selection
	3.2 Recruitment of volunteers
	3.3 Statistics

	4 Results
	4.1 Word selection
	4.2 Memorization
	4.3 Guessing

	5 Statistical modelling
	5.1 Strategies and entropy
	5.2 Semantic aspects

	6 Limitations
	6.1 Ecological validity
	6.2 Short-term and long-term memory
	6.3 Free choice of words

	7 Discussion
	8 Conclusion
	References

	i16-2-mayer
	Abstract
	1 Introduction
	2 Related Work
	3 Development of the Awareness-Raising Material
	3.1 First Iteration - Based on Literature
	3.2 Second Iteration - Incorporation of Structured Expert Feedback
	3.3 Third Iteration - Visual Elements and Lay-User Feedback

	4 User Study Methodology
	4.1 Hypotheses
	4.2 Procedure
	4.3 Questionnaires
	4.4 Analysis

	5 Results – Pre-Treatment and Post-Treatment Questionnaires
	5.1 Assessment of Scenarios
	5.2 Password Security Ratings
	5.3 Qualitative Results

	6 Results – Retention Questionnaires
	6.1 Assessment of Scenarios
	6.2 Password Security Ratings

	7 Discussion
	7.1 Improvements Derived from the User Study
	7.2 Limitations

	8 Conclusion
	References
	A.1 Introductory Sections
	A.2 Attacks
	A.3 Technologies to Protect User Credentials


	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	271.pdf
	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets 
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run



