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Abstract—In this paper we consider the design of semi-static
inter-cell interference coordination schemes for LTE networks.
In this approach, base stations coordinate the power settings per
resource block over long time spans such as seconds. In order to
optimize the power settings, one needs to employ models which
predict the rate of terminals over the next coordination period
under the usage of a given power setting. However, these models
are typically quite simple and neglect the impact from fading
as well as from dynamic resource allocation performed at the
base stations on a millisecond base. Ignoring such properties of
OFDMA networks leads therefore to suboptimal transmit power
settings. In this paper, we study the impact from a precise rate
prediction model that accurately accounts for fading and dynamic
resource allocation. On the down-side, this more precise model
leads to a much more involved optimization problem to be solved
once per coordination period. We propose two different heuristic
methods to deal with this problem. Especially the usage of genetic
algorithms results to be promising to counteract the complexity
increase. We then study the overall system performance and
find precise rate prediction models to be essential for semi-static
interference coordination as they provide significant performance
improvements in comparison to approaches with simpler models.

I. INTRODUCTION

The current proliferation of smartphones, tablet computers,
and mobile usage of laptops have caused an exponentially in-
creasing demand in data traffic for cellular radio networks [1].
To sustain high demands on data traffic, network operators
satisfy these requirements with a denser deployment of base
stations. For 4th generation networks, such as LTE and LTE-A,
this approach is not sufficient as such networks operate with
a frequency reuse of one. Hence, neighboring cells transmit
in the same frequency band which inevitably causes inter-cell
interference. Cell-edge terminals are exposed to this the most.

To mitigate this problem and improve the system capacity,
inter-cell interference coordination has been discussed recently
as promising solution [2]. According to the time-scale of
operation, coordination schemes can be categorized into static,
semi-static and fully synchronized approaches [3], [4]. Dis-
cussions on interference coordination schemes started with
static schemes, where the general idea is to use appropriate
transmit power profiles at neighbouring base stations to create
spectrum parts where especially cell-edge terminals can gain
from a better signal-to-interference ratio. Example profiles are
known as fractional frequency reuse or soft-frequency reuse.
The configuration of such profiles is usually considered during

the network planning phase. As these profiles are not modified
over time, we refer to them as static. They have the advantage
of not having coordination overhead. On the downside, with
substantially changing load conditions such static profiles are
inferior to dynamic coordination schemes [3]. In contrast,
fully-synchronized schemes rely on the instantaneous channel
quality information (CQI) feedback from the terminals which
need to be forwarded to a coordination unit. The coordination
unit then computes new transmit power profiles to be fed-
back to the base stations. This cycle is re-entered every
10 milliseconds, or faster. It creates obviously high system
requirements to be met in terms of communication capacity
of the X2 interface as well as regarding the computational
capabilities to be provided at the base station. Compared to
fully synchronized schemes, semi-static approaches [3], [5],
[6] have relaxed constraints on the information exchange and
computational requirements as the coordination periods are
typically in the range of seconds or longer. Such time intervals
still allow tracking of terminal positions and consequently
adapting to new interference situations in the cell (adapt
to changing/dynamic loads). Hence, semi-static coordination
techniques can be considered as more suitable coordination
approaches for practical deployments.

However, such semi-static approaches are also associated
with challenges. Most importantly, for optimizing the power
profiles a precise model is required that predicts the rates
for the next coordination period under some given transmit
power and interference level. This is rather difficult to obtain
as the radio channel is constantly fluctuating due to fast fading.
Furthermore, upcoming 4th generation systems employ at the
base station dynamic resource schedulers (such as proportional
fair scheduling) which determine the resource allocation on
a millisecond base. This dynamic process has a significant
impact on the predicted rates as well, as this allocation
process provides inherent interference mitigation [7]. Due to
these modeling difficulties, rate predictions for semi-static
interference coordination schemes are usually based on quite
simple models.

In this paper, we deal with the consequences of the usage
of such simple models. The contribution of the paper is two-
fold. We first discuss a precise model for rate-prediction,
which is more involved and can only be solved numerically. In
addition, it makes the process of optimizing the power profiles



at the coordination unit much more complex. In order to
balance this, we study different heuristics for the optimization
process and find especially genetic algorithms to be a suitable
approach. We then benchmark the combination of the precise
model being optimized by genetic algorithms with approaches
utilizing the simple model. It turns out that precise models can
provide much better system performance due to their efficient
allocation of transmit powers among neighboring cells. To the
best of our knowledge, these important design aspects of semi-
static coordination schemes have not been considered before.

We structure this work as follows. Initially, we present a
system model and discuss the problem statement in the context
of related work in Section II. Then, we derive the precise rate
prediction model in Section III and discuss different heuristics
for the subsequent coordination problem in Section IV. The
approach is evaluated in Section V. We finally conclude the
paper in Section VI.

II. PRELIMINARIES

In this section we first present our system model. We then
give a problem statement and discuss state-of-the-art.

A. System Model

We consider a deployment of K cells, where a total of J(k)
terminals per cells are actively transmitting and receiving data
packets. Each terminal is associated to one base station only.
Time is slotted into so called Transmission Time Intervals
(TTIs) of duration TTTI = 1 ms, which are index by t. Each
base station is connected to the backbone and receives from
it data packets destined for the corresponding terminals. In
order to transmit these packets over the time-varying wireless
channel, a scheduling algorithm within the base station de-
termines the matching of radio resources to packets for the
upcoming TTIs. In frequency division duplex (FDD) systems,
which most LTE systems utilize, up-link transmissions are
handled simultaneously over a different frequency band. In
the following, we only focus on the down-link of such a LTE
FDD system.

In the down-link each base station utilizes a system band-
width of B [Hz] with center frequency fc [Hz] which is
split into N disjoint sets of frequency bands of bandwidth
Bn = B/N [Hz], also referred to as Resource Blocks (RBs).
They are the minimal transmission resources that can be
assigned to a terminal within a TTI. Each RB has NS OFDM
symbols per TTI and NC parallel OFDM subcarriers for
payload transmission. Furthermore, base station k can allocate
per RB n a variable transmit power pkn [W]. However, the total
transmit power allocated over all RBs has an upper limit of
Pmax [W], i.e., ∀k :

∑
∀n p

k
n (t) ≤ Pmax.

In LTE systems neighbouring base stations (of the same net-
work) operate within the same spectrum. This leads to signifi-
cant inter-cell interference. Hence, the down-link transmission
of data is for most terminals in most cells interference-limited
(unless the terminals are at the core of a cell) as the signal-
of-interest is interfering with signals from neighbouring cells.

More precisely, this is dependent on the setting of the trans-
mit powers pkn per resource block. Taking the interference-
limitation into account, any terminal in the system experiences
on each RB a randomly varying signal-to-interference-and-
noise ratio (SINR) due to path-loss, shadowing and fading of
the signal of interest and interfering signals as well. Denoting
by h2s,j,n (t), h2i,j,n (t) the instantaneous channel gains from
the serving and strongest interferer base station to terminal j
on RB n, the SINR γj,n (t) is defined as:

γj,n (t) =
psn (t) · h2s,j,n (t)

pin (t) · h2i,j,n (t) + σ2
, (1)

where σ2 denotes the noise power. The channel gains
h2s,j,n (t) , h2i,j,n (t) vary randomly in time, frequency and over
different terminals (multi-user diversity) due to fading that is
caused by the mobility of terminals and the multi-path propa-
gation environment. We assume a Rayleigh fading model, i.e.,
the channel gains h2k,j,n (t) are exponentially distributed with
mean h̄2k,j,n (t). Over shorter time spans (i.e., over seconds)
the means h̄2k,j,n (t) are assumed to stay constant. Furthermore,
the fading is assumed to be slowly varying compared to the
duration of a TTI. Thus, as terminals report the channel states
to the base station in one TTI, these channel state indications
can serve as a sufficient prediction for the next TTI. Given
these channel state predictions, the base station can employ
link adaptation to dynamically adjust the modulation and
coding to the instantaneous channel conditions. We denote the
function that captures the performance of this link adaptation
by C (γ). Hence, for the SINR realization γj,n (t) the spectral
efficiency with which this resource blocks can be utilized
is given by C(γj,n(t)). LTE-specific functions mapping the
SINR γj,n (t) to spectral efficiency C(γj,n(t)) have been
reported in [8].

A crucial component determining the performance of LTE
systems is the base station scheduler for the down-link. In this
work we assume the SINR-based proportional fair scheduling
(PFS) algorithm, which is a standard scheduler widely con-
sidered in LTE research and standardization. PFS dynamically
assigns RBs to the terminals based on their channel quality
(CQI) reports per TTI transmitted during the previous uplink
(UL) period. However, instead of purely assigning resource
blocks based on the instantaneous channel states, PFS normal-
izes the instantaneous states with the corresponding average
SINR and assigns RBs based on these weighted coefficients.
Formally, the average channel state from the W last TTIs is
given by:

γ̄j,n (t) =
1

W

t∑
i=t−W

γj,n (i) . (2)

Given the instantaneous channel state γj,n(t), the channel
weights are defined as:

γ̂j,n(t) =
γj,n(t)

γ̄j,n(t)
. (3)

Based on the weights γ̂j,n(t) the RBs are now assigned for
the upcoming TTI in an opportunistic way, i.e., the terminal j∗



having the highest coefficient γ̂j,n(t) on RB n will be selected
for transmission:

∀k, n : j∗n (t) = arg max
j∈J (k)

γ̂j,n(t) , (4)

where J (k) is the set of all terminals belonging to cell k.

B. Problem Statement

In this work, we are interested in the design of a semi-static
scheme for interference coordination. We propose to adapt the
transmit power settings for the base stations over a period TIC
that is much longer than a TTI (TIC equalling hundreds or
even thousands of TTIs). The rationale for such a design is
straightforward. Faster interference coordination creates sub-
stantial overhead as information has to be exchanged between
base stations. However, the fundamental load situation (the
number of the active terminals in the down-link as well as
their positions) per cell does not vary drastically on a TTI
time scale. Hence, the high overhead might not be justified.
On the other hand, if the transmit power settings per base
station are not adapted at all, there is a high risk that due to
load imbalances this leads to significant performance losses
in the network. The semi-static approach balances these two
aspects. It is fast enough to cope with load variations but is not
creating excessive overhead. Finally, slower power adaptations
also allow for more complex computations to be performed in
between.

Formally, semi-static interference coordination is defined as
an algorithm that decides on the power allocation per resource
block and cell pkn jointly for a cluster of cells, cf. Fig. 1.
These power allocations are valid for a coordination period TIC
where we assume that TIC � 1 TTI. Furthermore, we assume
that the coordination entity can base the power allocation
decisions on the average channel state of the terminals with
respect to the base stations in the cluster, i.e. h̄2k,j,n.

eNodeB eNodeB
X2

Evolved Packet
Core

S1S1

Central Entity
Power mask Power mask

Fig. 1: Schematic overview of the proposed semi-static ICIC.

Although appealing, the design of such a semi-static coor-
dination scheme is significantly complicated by two related
issues. Power assignments pkn clearly need to be found for the
next coordination period such that some objective function of
the achieved rates is maximized. However, the rates to be max-
imized are an expectation over the next coordination period,
i.e. we are in principle interested in Rj,n = E [C (γj,n (t))]
for some setting of the transmit and interference power.

Nevertheless, the expected rates depend on the distribution of
the scheduled random SINRs γj,n(t) (where the fast resource
allocation at the base station is performing this scheduling).
Hence, we need to determine the distribution of the SINRs
with respect to the fading (of the signal-of-interest as well
as the interference signal) but also with respect to the impact
of proportional fair scheduling performed at each base station.
This makes the analytical derivation of the expected rates quite
involved. In addition, assuming we have such an expected rate
expression, we still need to determine the optimal choice of
the power allocations pkn. As we will see, this is a second
major problem as the rate expectations turn out to be highly
nonlinear.

In the following, we assume that the interference coordi-
nation is performing a max-min optimization of the expected
rates of the terminals in the coordination cluster:

max ε

s.t.
N∑

n=1

Rj,n > ε ∀k, ∀j ∈ J (k),

N∑
n=1

pkn ≤ Pmax ∀k. (5)

Note that this choice of objective function is purely for
illustration purposes. Any other objective function could also
be used based on the contributions that we make in this paper.

C. Related Work

Interference coordination has received significant attention
recently due to its beneficial performance impact. In the
following we only discuss approaches that also address semi-
static coordination. In [3], [9], [5] several schemes are pre-
sented with update periods in the range of several hundred
TTIs while the base station is assumed to apply opportunistic
scheduling during each single TTI. All three approaches rely
on a centralized architecture where several base stations are
coordinated by a central entity. As objective function pure
throughput maximization is considered which is either based
on a long-term SINR rate prediction model [3], [9] or on
an instantaneous SINR rate prediction model [5]. However,
the impact of the opportunistic scheduler is not considered
despite the fact that in general long-term SINR based models
overestimate the impact of interference for systems operating
with dynamic schedulers [10], [11].

A distributed approach for semi-static interference coordi-
nation is presented in [6], [12]. The authors propose to update
the transmit power settings in a cluster of cells every second
while the base stations run a variant of the proportional fair
scheduler (α-fair scheduling) for resource allocation per TTI.
The interference coordination is performed by a distributed
gradient descent method. It runs on top of a stochastic model
for the expected rates and approximates the impact of PF
scheduling. While the stochastic model accounts for Rayleigh
fading for the signal of interest, it does not consider the fading
of the interfering signals. The authors furthermore ignore the



distribution of the SINR under proportional fair scheduling,
only accounting for the rate obtained from the expected base
SINR. This leads again to a significant overestimation of the
interference impact which we address by an exact model in
this paper.

III. RATE PREDICTION MODEL

In this section we present two models for the expected
rate Rj,n over the period of one coordination cycle. We start
with presenting the standard model and later on present our
extension.

A. Simplified Rate Prediction Model

The standard model for rate prediction is as follows. The
average channel gain values h̄2s,j,n and h̄2i,j,n that terminals
correspondingly have with their serving base station and
interfering ones are used for determining a reference SINR:

γ̃j,n =
psn · h̄2s,j,n

pin · h̄2i,j,n + σ2
. (6)

By mapping this reference SINR γ̃j,n to spectral efficiency
according to the capacity function C(γ̃j,n), the simplified rate
prediction is obtained as:

Rj,n =
NS ·NC

TTTI · |J−1(j)|
C (γ̃j,n) , (7)

where J−1(j) denotes the set of terminals which are in
the same cell as terminal j. Note that Equation (7) neither
considers the multi-user diversity gain stemming from the PF
scheduler nor does it account for the fading of both signals
over the coordination period. Moreover, the normalization by
1/|J−1(j)| assumes that each terminal in the cell has equal
chances to be scheduled by the PF scheduler, which is not
the case. Nevertheless, such simplified models (or derivatives
thereof) are commonly used in literature, c.f. [3], [9]. In the
following, we use the above mentioned model as a comparison
scheme.

B. Precise Rate Prediction Model

For a better rate estimate more details need to be considered,
especially regarding fading and scheduling. Let us start with
the definition of the following indicator function:

Mj,n =

{
1, γ̂j,n ≥ maxi∈J−1(i)\j(γ̂i,n)
0, otherwise, (8)

modeling the PFS decision. The function equals one if terminal
j has the highest normalized SINR γ̂j,n (t) in the cell. Let
Xj,n denote the random variable representing the fading SINR
γj,n(t) and fXj,n|Mj,n=1(x) be the PDF of the scheduled
SINR, then from [11] we know for PFS:

fXj,n|Mj,n=1(x) =

∏
∀i∈J−1(i)\j FXi,n

(
E[Xi,n]
E[Xj,n]

· x) · fXj,n
(x)

P (Mj,n = 1)
,

(9)

where E [X] is the expected value of X . Furthermore,
fXj,n (x) and FXj,n(x) are the basic PDF and CDF of the
SINR γj,n (t) and are given by [7]:

fXj,n (x) =

[
σ2

P i
j,n · xj,n + P s

j,n

+
P s
j,n · P i

j,n

(P i
j,n · x+ P s

j,n)2

]

·exp

(
− σ2

P s
j,n

· x

)
,

(10)

FXj,n
(x) = 1−

P s
j,n

P i
j,n · x+ P s

j,n

exp

(
− σ2

P s
j,n

· x

)
, (11)

where P s
j,n = psnh̄

2
s,j,n and P i

j,n = pinh̄
2
i,j,n are the average

received power of the signal of interest and of the interference
at terminal j on resource block n.

From [11] the precise rate expectation Rj,n is then obtained
as:

Rj,n =
NS ·NC

TTTI

∫ ∞
0

C(x)
∏

∀i∈J−1(i)\j

FXi,n(
E[Xi,n]

E[Xj,n]
· x)

·fXj,n
(x) dx.

(12)

Although there is no closed-form solution to the integral,
we can nevertheless obtain the expected rates Rj,n based on
(12) by using numerical methods. Especially if we limit the
possible realizations for the transmit powers psn and pin, the
corresponding expected rates can be precomputed. Finally,
note that this analyical model has been validated in [11] as
well.

IV. SOLVING SEMI-STATIC INTERFERENCE
COORDINATION PROBLEMS

It is clear that the solution of the interference coordination
problem in (5) is highly non-linear due to the complex
expression for the rate predictions of the previous section.
Thus, an analytical solution to Problem (5) is infeasible.
Hence, semi-static interference coordination problems require
heuristic solution strategies for obtaining good solutions. Note
in particular that due to the nature of the semi-static approach
and the duration of the coordination period TIC, there is sig-
nificantly more time available for determining good solutions
compared to for example resource allocations per TTI [13].
In the following, we study two different heuristic approaches.
The first one is a straight-forward reformulation of Problem (5)
as integer linear programming (ILP) problem which allows the
application of standard solvers like CPLEX [14]. As a second
approach we propose the application of genetic algorithms
(GA).

A. ILP Reformulation

In order to convert Problem (5) into an ILP, we first
discretize the optimization variables pkn to a limited set of L
transmission power values p ∈ {p1, p2, . . . , pL}. Notice that
this allows us to pre-compute the obtainable rates for each



terminal R̂j,n,l1,l2 from Equation 12 for any combination of
transmission powers pl1, pl2. Given the discrete set of power
settings and the associated rates, the problem becomes a
combinatorial one. In general such problems are known to
be hard optimization problems. However, through redefining
them to an ILP problem and using state-of-the-art software
the considered instances can be solved with a high quality
(still at the price of long computation times typically in the
range of minutes). The reformulation of Problem (5) as ILP
is straightforward:

max ε

s.t.
N∑

n=1

L∑
l1=1

L∑
l2=1

R̂j,n,l1,l2 · zn,l1,l2 > ε ∀k, ∀j ∈ J (k),

N∑
n=1

L∑
l1=1

L∑
l2=1

p(lk) · zn,l1,l2 ≤ Pmax ∀k,

L∑
l1=1

L∑
l2=1

zn,l1,l2 = 1 ∀n,

zn,l1,l2 ∈ {0, 1}, (13)

The ILP version is now optimized based on the binary variable
z. In the following, we use the solution to the ILP reformula-
tion mainly as a benchmarking scheme.

B. Genetic Algorithm Design

Genetic algorithms (GA) are widely used heuristic methods
for solving non-linear optimization problems [15]. The basic
idea stems from evolutionary theory, postulating the survival
of the fittest. Evolution is mimicked by repeatedly applying
processes like crossover, mutation and selection to a popula-
tion of individuals. An individual (genome) possesses some
traits, which are encoded into strings (numbers). Applied to
our power allocation problem, the set of power allocations (per
RB and per cell) pkn represents the traits of one individual.
When the traits are discrete p ∈ {p1, p2, . . . , pL}, they are
referred to as alleles. A genome example is represented in
Fig. 2. Genomes can be ranked among others by the fitness
function. Referring to our optimization Problem (5), the fitness
of the genomes is the achieved minimum rate per cell. Natural
selection is imitated by selecting with a probability pc the
fittest genomes for crossover. In this way, parent genomes will
be able to pass further their good traits to a new generation
of offspring. Pr percent of the least-fit individuals from the
previous generation are replaced with the newly bred and
fittest individuals. In this way a new generation of individuals
is created containing both old members from the previous
generation and the new ones coming from the crossover
and mutation process. If selection and crossover alone are
repeatedly applied to individuals, a homogeneous population
will be obtained. The lack of diversity is disadvantageous
as a homogeneous population limits GAs ability to further
explore the solution space. It can lead to a local optimum of
the optimization problem. Diversity can be promoted through
mutation and a smart initialization of the population. The

0 0.5
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Fig. 2: Genome representation for power masks of two neigh-
bouring cells. Represents pkn per resource block of each cell.

Parameter Value
Number of generations 20.000
Replacement percentage 0.7

Population size 30
Mutation probability 0.05
Crossover probability 0.8

20% uniform power mask
20% FR2 power mask

Initial population 10% stairs power mask
50% random power masks

Selection strategy Overlapping populations
Crossover type One-point crossover

TABLE I: Parameters for the genetic algorithm.

mutation operator we use, randomly determines for every gene
in the genome whether it should be mutated, according to a
mutation probability pm. If a mutation takes place, the value of
the gene is set to an arbitrarily allele, different from the current
one. New gene combinations are introduced to the population.
Thus, the GA can “escape” from locale optima and converge
to a globally better solution. A second approach to support
diversity is also initialization with a diverse population. A well
selection of individuals for initialization helps also to obtain
a fast convergence of the GA. We initialize the population
of individuals with power allocations that represent a certain
diversity: uniform, frequency reuse two, stair functions and
random settings.

Crossover and mutation altogether might produce individ-
uals not fulfilling the optimization problem constraints, i.e.,
infeasible solutions of the optimization problem. In our case,
the transmission power allocated per cell might be higher than
the allowed Pmax. After the crossover and mutation process
a correction needs to be applied to the genomes not fulfilling
the power constraint. Random alleles are selected and scaled
down, until the transmission power constraint is fulfilled. As a
stopping criterion the number of generations is selected. The
iterative operations of the GA are depicted in Fig. 3. A more
detailed discussion of the method can be found in [16]. For
an efficient GA run, its parameters need to be tuned. We did
a survey on the optimal configuration of GA parameters, the
results of the GA optimization parameters is given in Table I.
Our implementation is based on the GAlib [17] C++ library. It
provides many class objects and tools for usage in the context
of genetic algorithms.
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Fig. 3: GA flowchart.

V. PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
interference coordination scheme. For the evaluations we use a
system level simulator based on OMNeT+ [18]. The underly-
ing performance model presented in Section III has already
been validated in [11]. Hence, we focus explicitly on the
performance impact with respect to interference coordination.

A. Evaluation Methodology

The evaluation is performed in two steps. We start with
benchmarking the ability of the GA to reach near-optimal
solutions in comparison to the ILP. Note that in this step we
only consider the numerical value of the objective function
of Problem (5). Thus, we consider the minimal predicted
rates ε as obtained from both methods. The second part
of the evaluation relates then to the simulated system level
performance.

As baseline scenario we consider two neighboring cells.
Terminals are randomly distributed over the area in between
the two base stations as shown in Fig. 4. While the terminals
are uniformly distributed over the cell, we consider two
specific load scenarios. In the first one, we have a symmetric
load. Hence, in each cell 40 terminals are positioned. In the
second case we consider an asymmetric load of 15 terminals
in the one and 65 terminals in the other cell. For each scenario
we evaluated 20 different instances of the random positions of
the terminals, referred to as drop. Table II gives more details
on the considered parameters for the simulation.
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Fig. 4: Example drop of terminals between two BSs.

Parameter name Value
Simulation Time 5 s

Base station number k 2
Inter-site distance 500 m

Transmission Power Pmax 20 W
Carrier Frequency 2 GHz
System Bandwidth 5 MHz (25 RBs)

Symbols per TTI NC 7
Subcarriers per RB NS 12
Scheduler Window W 1000 TTI

Noise Power σ2 per RB -112 dBm
Number of Terminals J 80

Path Loss Model h̄2 35.2 + 35 log10(d) [dB] (Urban)
Antenna Pattern Omnidirectional

Error Model Exponential Effective SINR
Traffic Model Full Buffer

Fast Fading Model Jake’s (Sum of Sinusoids)
Background Doppler Freq 5 Hz

TABLE II: Parameters for the system level simulations.

For the system level simulations, we consider two different
performance metrics. Our primary metric is the minimal aver-
age rate over all terminals as observed during the simulation.
In addition, we also consider the empirical CDF of the average
rates over all terminals in order to get a more detailed view
of the performance of the different approaches. Five different
comparison schemes are considered: The solution to the ILP
based on the detailed rate model of Section III-B, the GA
based on the same rate model referred to as GA precise,
and the GA based on the simple rate model of Section III-A
referred to as GA simple. Finally, we also consider a uniform
power profile over all resource blocks in all cells, as well as a
frequency reuse 2. These last two schemes are static whereas
the first three schemes are semi-static.

B. Initial GA Benchmarking

In the first evaluation step, we simply consider the objective
function as obtained by the GA in comparison to the solution
of the ILP. Recall that both approaches are sub-optimal,
nevertheless, the ILP solution is a good indication for the
overall achievable performance (as it always considers also
the integer-relaxation when searching for near-optimal integer
solutions). In the following, twenty different drops are taken
into account and for each we obtained the objective function
for the ILP solution. Next, we determined for each drop ten
solutions by the GA, as the GA is a randomized heuristic.
These obtained objective functions were then averaged and
95% confidence intervals were computed.

The resulting performance comparison is given in Fig. 5.
Note that the objective values obtained by the GA are nearly
as good as the ones from the ILP solutions. The maximal
deviation occurred for drop number 3, where the GA value is
by 2.6% lower than the ILP solution. Finally, one should note
the quite small confidence intervals, indicating a low variance
of the results obtained by the GA. We conclude from this that
the GA is capable of generating very good power profiles.
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Fig. 5: Comparison of ILP vs. GA scores.

C. Simulation of the Symmetric Load Scenario

As next step we applied the above generated power alloca-
tions in the system level simulation. For each drop and power
profile we repeated the system level simulation 30 times with
different seeds for the random channel generation process.
Afterwards, the corresponding average and 95% confidence
intervals for the minimum rate per terminal were obtained.
These results are given in Fig. 6a. Note that this figure
relates to the symmetric load whereas the asymmetric load
is discussed in the next subsection.

The figure reveals (surprisingly) that in terms of the minimal
rates all comparison schemes provide more or less the same
performance. The only exception to this observation is the
uniform power profile, which provides a much lower minimal
rate over all drops. Thus, for a symmetric load scenario,
at least under these parameters the cell-edge terminals are
treated equally well by the different interference coordination
schemes. However, there is still a striking difference in the
efficiency of the generated power profiles. This can be seen in
Fig. 7a where we show the empirical CDFs over all average
rates obtained in the different simulation runs. Here we see
clearly a substantial difference between the interference coor-
dination scheme based on the simple model in comparison to
the precise model. For example, the best 40% of the terminals
receive under a precise model at least an average throughput
which is 50% higher. Better overall performance is only
provided by the uniform power profile which comes at the cost
of having a low cell edge throughput. This performance trade-
off is observed often in interference coordination schemes for
LTE.

D. Asymmetric Load Scenario

The observations for the symmetric load case become more
pronounced in case of the asymmetric loads. Fig. 6b shows the
minimal average rates achieved by the different approaches.
Here, we observe a significant difference in terms of cell edge
performance between the precise and the simple model (at
least 50% more rate provided by the precise model). Again,
the uniform power profile has the worst performance. Next,
if we consider the empirical CDF over all terminal rates in
Fig. 7b, we see that the precise model also outperforms the
simple model (except for the best 20% of the terminals). We
conclude that the usage of a precise performance model is even
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Fig. 7: Empirical CDF of the average rates per terminal.

more important if significant load imbalances exist between
the cells.

VI. CONCLUSIONS

In this paper we have investigated the impact of precise rate
prediction models on the design and performance of semi-
static interference coordination schemes for LTE networks.
Precise rate prediction models allow for an efficient allocation
of transmit power among the resource blocks in interfer-
ing cells leading to substantial performance improvements
in comparison to simpler rate prediction models. However,
we find that the computational complexity of the resulting
optimization problem increases drastically. The application
of genetic algorithms can efficiently mitigate this increase
in complexity, as such heuristics generate close-to-optimal
solutions while still providing realistic run times. Hence, we
conclude that the usage of precise models is essential for semi-
static interference coordination schemes. As future work, we
are interested in the extension of our analysis to the case of
arbitrarily many interferers. In addition, we see significant



0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

Terminal Drops

M
in

im
a
l 
D

a
ta

 R
a
te

s
 (

k
b
p
s
)

 

 

ILP GA precise GA simple Reuse 2 Uniform

(a) Symmetric load scenario.

0 2 4 6 8 10 12 14 16 18 20
0  

50 

100

150

200

Terminal Drops

M
in

im
a
l 
D

a
ta

 R
a
te

s
 (

k
b
p
s
)

 

 

GA precise GA simple Reuse 2 Uniform

(b) Asymmetric load scenario.

Fig. 6: Minimal average rates over all terminals for all drops.

potential to drastically reduce the computation times of a
genetic algorithm by the usage of graphics processing units
and other improvements.
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